CAREER: A Sequential Learning Framework with Applications to Learning from Crowds

职业:顺序学习框架及其在群体学习中的应用

基本信息

  • 批准号:
    1845444
  • 负责人:
  • 金额:
    $ 49.78万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-03-01 至 2025-02-28
  • 项目状态:
    未结题

项目摘要

While traditional machine learning usually deals with given static data, many online data are collected via a sequence of interactions with agents such as crowd labelers or customers. The motivating applications of the project include crowd labeling tasks (which is a powerful paradigm for utilizing human wisdom to collect data labels), sequential product recommendation, and online multi-product pricing. For all these applications, online learning and sequential decision-making are indispensable to each other. The objective of this project is to develop new sequential learning algorithms with rigorous theoretical guarantees. The developed framework will not only make fundamental technical contributions but also facilitate many important applications. For example, it will greatly improve the aggregated answers from crowd labelers with a significantly reduced cost. It can enhance the revenue of business while improving the customers' satisfaction by providing accurate recommendations. In addition, this project also facilitates the development of new courses on machine learning for business school students, which helps bring the knowledge from data science to future business leaders, and provides training to K-12 students, with an emphasis on those from underrepresented groups.This project strives to develop a unified learning and decision-making framework, which serves as an intellectual bridge connecting machine learning, stochastic optimization, and decision theory. In particular, there are three complementary research thrusts. The first thrust creates a suite of efficient algorithms that deal with complex task structures, such as ranking with transitivity structures or product recommendation with combinatorial structures, in a non-stationary environment. The algorithms will extend the bandit learning with finite independent arms into the setting with a complex correlation structure among potentially infinite number of arms. The second thrust seeks a cost-effective paradigm that either incorporates "optimal stopping" rule under a certain budget constraint or minimizes the sample complexity. The third thrust systematically evaluates the algorithms and theories on real problems coming from both crowdsourcing and other business-related applications. Moreover, since the computational efficiency and scalability is an important focus, the project will also advance the distributed statistical learning and stochastic optimization fields.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
虽然传统的机器学习通常处理给定的静态数据,但许多在线数据是通过与人群标记者或客户等代理的一系列交互来收集的。该项目的激励应用包括人群标签任务(这是利用人类智慧收集数据标签的强大范例)、顺序产品推荐和在线多产品定价。对于所有这些应用,在线学习和顺序决策是缺一不可的。该项目的目标是开发具有严格理论保证的新顺序学习算法。开发的框架不仅将做出基础性的技术贡献,还将促进许多重要的应用。例如,它将极大地改善人群标记者的汇总答案,同时显着降低成本。它可以通过提供准确的建议来增加业务收入,同时提高客户满意度。此外,该项目还促进为商学院学生开发机器学习新课程,帮助将数据科学知识传授给未来的商界领袖,并为 K-12 学生(重点是来自弱势群体的学生)提供培训该项目致力于开发一个统一的学习和决策框架,作为连接机器学习、随机优化和决策理论的知识桥梁。特别是,存在三个互补的研究主旨。第一个推动力创建了一套有效的算法,可以在非平稳环境中处理复杂的任务结构,例如使用传递性结构进行排名或使用组合结构进行产品推荐。该算法将有限独立臂的老虎机学习扩展到可能无限数量的臂之间具有复杂相关结构的设置。第二个推动力寻求一种具有成本效益的范例,该范例要么在一定的预算约束下结合“最佳停止”规则,要么最小化样本复杂性。第三个重点系统地评估了来自众包和其他业务相关应用程序的实际问题的算法和理论。此外,由于计算效率和可扩展性是一个重要关注点,该项目还将推进分布式统计学习和随机优化领域。该奖项反映了 NSF 的法定使命,并通过利用基金会的智力优势和更广泛的影响进行评估,认为值得支持审查标准。

项目成果

期刊论文数量(25)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Robust Dynamic Assortment Optimization in the Presence of Outlier Customers
存在异常客户时的稳健动态分类优化
  • DOI:
    10.1287/opre.2020.0281
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Chen, Xi;Krishnamurthy, Akshay;Wang, Yining
  • 通讯作者:
    Wang, Yining
Differential Privacy in Personalized Pricing with Nonparametric Demand Models
非参数需求模型个性化定价中的差异隐私
  • DOI:
    10.1287/opre.2022.2347
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Chen, Xi;Miao, Sentao;Wang, Yining
  • 通讯作者:
    Wang, Yining
Robust Dynamic Pricing with Demand Learning in the Presence of Outlier Customers
在存在异常客户的情况下通过需求学习进行稳健的动态定价
  • DOI:
    10.1287/opre.2022.2280
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Chen, Xi;Wang, Yining
  • 通讯作者:
    Wang, Yining
Bayesian Decision Process for Budget-efficient Crowdsourced Clustering
  • DOI:
    10.24963/ijcai.2020/283
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Optimal Stopping and Worker Selection in Crowdsourcing: an Adaptive Sequential Probability Ratio Test Framework
  • DOI:
    10.5705/ss.202018.0300
  • 发表时间:
    2017-08
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Xiaoou Li;Yunxiao Chen;Xi Chen;Jingchen Liu;Z. Ying
  • 通讯作者:
    Xiaoou Li;Yunxiao Chen;Xi Chen;Jingchen Liu;Z. Ying
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xi Chen其他文献

Predicting a two-dimensional P2S3 monolayer: A global minimum structure
预测二维 P2S3 单层:全局最小结构
  • DOI:
    10.1016/j.commatsci.2018.08.061
  • 发表时间:
    2017-03
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Hang Xiao;Xiaoyang Shi;Yayun Zhang;Mingjia Li;Xiangbiao Liao;Xi Chen
  • 通讯作者:
    Xi Chen
Moving-Water Equilibria Preserving Partial Relaxation Scheme for the Saint-Venant System
圣维南系统的动水平衡保持部分弛豫方案
  • DOI:
    10.1137/19m1258098
  • 发表时间:
    2020-01
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Xin Liu;Xi Chen;Shi Jin;Alex;er Kurganov;Tong Wu;Hui Yu
  • 通讯作者:
    Hui Yu
Matching patients and healthcare service providers: a novel two-stage method based on knowledge rules and OWA-NSGA-II algorithm
匹配患者和医疗服务提供者:基于知识规则和 OWA-NSGA-II 算法的新型两阶段方法
  • DOI:
    10.1007/s10878-017-0221-2
  • 发表时间:
    2017-12
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Xi Chen;Liu Zhao;Haiming Liang;Kin Keung Lai
  • 通讯作者:
    Kin Keung Lai
Low-molecular-weight carbonyl volatile organic compounds on the North China Plain
华北平原低分子羰基挥发性有机物
  • DOI:
    10.1016/j.atmosenv.2022.119000
  • 发表时间:
    2022-02
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Yu Huang;Xingru Li;Xi Chen;Wenjing Wang;Yinghong Wang;Zirui Liu;Guiqian Tang
  • 通讯作者:
    Guiqian Tang
Enhancing spin-Hall spin–orbit torque efficiency by bulk spin scattering modulation in ferromagnets with ruthenium impurities
通过含钌杂质的铁磁体中的体自旋散射调制来提高自旋霍尔自旋轨道扭矩效率
  • DOI:
    10.1063/5.0069654
  • 发表时间:
    2021-11
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Guonan Feng;Xi Chen;Di Fu;Jintao Liu;Xinyan Yang;Guanghua Yu
  • 通讯作者:
    Guanghua Yu

Xi Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xi Chen', 18)}}的其他基金

NSF Convergence Accelerator Track M: Water-responsive Materials for Evaporation Energy Harvesting
NSF 收敛加速器轨道 M:用于蒸发能量收集的水响应材料
  • 批准号:
    2344305
  • 财政年份:
    2024
  • 资助金额:
    $ 49.78万
  • 项目类别:
    Standard Grant
A Novel Contour-based Machine Learning Tool for Reliable Brain Tumour Resection (ContourBrain)
一种基于轮廓的新型机器学习工具,用于可靠的脑肿瘤切除(ContourBrain)
  • 批准号:
    EP/Y021614/1
  • 财政年份:
    2024
  • 资助金额:
    $ 49.78万
  • 项目类别:
    Research Grant
Collaborative Research: Water-responsive, Shape-shifting Supramolecular Protein Assemblies
合作研究:水响应、变形超分子蛋白质组装体
  • 批准号:
    2304959
  • 财政年份:
    2023
  • 资助金额:
    $ 49.78万
  • 项目类别:
    Standard Grant
CAREER: Programmable Negative Water Adsorption of Bioinspired Hygroscopic Materials
职业:仿生吸湿材料的可编程负吸水
  • 批准号:
    2238129
  • 财政年份:
    2023
  • 资助金额:
    $ 49.78万
  • 项目类别:
    Standard Grant
CAREER: Understanding the Size Effects on Spin-mediated Thermal Transport in Nanostructured Quantum Magnets
职业:了解纳米结构量子磁体中自旋介导的热传输的尺寸效应
  • 批准号:
    2144328
  • 财政年份:
    2022
  • 资助金额:
    $ 49.78万
  • 项目类别:
    Continuing Grant
CAREER: Model-Free Input Screening and Sensitivity Analysis in Simulation Metamodeling
职业:仿真元建模中的无模型输入筛选和敏感性分析
  • 批准号:
    1846663
  • 财政年份:
    2019
  • 资助金额:
    $ 49.78万
  • 项目类别:
    Standard Grant
S&AS: INT: Traffic Deconfliction for Smart and Autonomous Unmanned Aircraft Systems in Congested Environments
S
  • 批准号:
    1849300
  • 财政年份:
    2019
  • 资助金额:
    $ 49.78万
  • 项目类别:
    Standard Grant
SusChEM: Chemoenzymatic Methods for Efficient Synthesis of Glycolipids
SusChEM:高效合成糖脂的化学酶法
  • 批准号:
    1300449
  • 财政年份:
    2013
  • 资助金额:
    $ 49.78万
  • 项目类别:
    Standard Grant
CAREER: Bridging Game Theory, Economics and Computer Science: Equilibria, Fixed Points, and Beyond
职业:连接博弈论、经济学和计算机科学:均衡、不动点及其他
  • 批准号:
    1149257
  • 财政年份:
    2012
  • 资助金额:
    $ 49.78万
  • 项目类别:
    Continuing Grant
Chemoenzymatic methods for automated carbohydrate synthesis
自动碳水化合物合成的化学酶法
  • 批准号:
    1012511
  • 财政年份:
    2010
  • 资助金额:
    $ 49.78万
  • 项目类别:
    Standard Grant

相似国自然基金

原位表征指导顺序印刷调控有机光伏活性层的纵向结构实现高效大面积器件制备
  • 批准号:
    22309143
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多种动脉硬化标志物顺序响应型探针的构建及精准成像应用研究
  • 批准号:
    22368035
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
实验研究非局域顺序弱值在直接测量量子态及量子过程中的应用
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于吸附行为和传质规律的顺序式模拟移动床结构调控机制研究
  • 批准号:
    22268031
  • 批准年份:
    2022
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
基于化学链氧化偶联的二氧化碳甲烷顺序活化定向制取烯烃基础研究
  • 批准号:
    22279144
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目

相似海外基金

Development of Patient-Tailored Adaptive Treatment Strategies for Acute Severe Ulcerative Colitis
制定针对急性重症溃疡性结肠炎的患者定制适应性治疗策略
  • 批准号:
    10569397
  • 财政年份:
    2023
  • 资助金额:
    $ 49.78万
  • 项目类别:
Developing Methods to Estimate Mediation Effects in Adaptive Interventions
开发估计适应性干预中中介效应的方法
  • 批准号:
    10163149
  • 财政年份:
    2019
  • 资助金额:
    $ 49.78万
  • 项目类别:
Developing Methods to Estimate Mediation Effects in Adaptive Interventions
开发估计适应性干预中中介效应的方法
  • 批准号:
    10404654
  • 财政年份:
    2019
  • 资助金额:
    $ 49.78万
  • 项目类别:
Developing Methods to Estimate Mediation Effects in Adaptive Interventions
开发估计适应性干预中中介效应的方法
  • 批准号:
    10620857
  • 财政年份:
    2019
  • 资助金额:
    $ 49.78万
  • 项目类别:
CAREER: Infrastructure Management under Model Uncertainty: Adaptive Sequential Learning and Decision Making
职业:模型不确定性下的基础设施管理:自适应顺序学习和决策
  • 批准号:
    1653716
  • 财政年份:
    2017
  • 资助金额:
    $ 49.78万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了