CAREER: AI-Enabled Self-Healing and Trusted Wireless Transceivers for Biomedical Applications
职业:用于生物医学应用的人工智能自我修复和可信无线收发器
基本信息
- 批准号:2339162
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-07-01 至 2029-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In the post COVID-19 era, the medical community is increasingly adopting remote healthcare as an alternative to conventional medicine. Wirelessly-connected biomedical devices are an indispensable part of such remote healthcare solutions. With the increased longevity of patients, the long-term reliability of the wireless transceivers used in biomedical devices is becoming a concern. Furthermore, the sensitive nature of personalized healthcare raises concerns about the data security. This CAREER project will study the security threats and failure mechanisms in radio frequency integrated circuits (RFIC) and develop intelligent, low-energy analog solutions so as to create a trusted wireless transceiver with the capability to detect and cure impairments. The proposed research in this CAREER project will fundamentally change the remote healthcare solutions by developing a new class of miniaturized self-healing and trusted wireless transceivers that can provide high-speed connectivity at the device level. Moreover, this project enhances the foundational knowledge in hardware security by introducing novel low-energy analog encryption techniques for use in secure data communications. The education plan in this project will significantly enhance the knowledge of students in communications and hardware security. Through collaboration with industry, students will have the opportunity to work with industrial mentors and gain practical knowledge in electronics. The plan also contains initiatives focused on STEM education in K-12. As part of this effort, summer workshops on secure electronics and data communications will be offered to local high school students and their teachers, followed by design competitions to inspire the students, particularly those from underrepresented groups and minorities, to seek post-secondary education in STEM related fields. Lab visits and boot camps will also be organized as part of outreach activities to share resources and facilitate the knowledge transfer to teachers and students.The goal of this CAREER project is to develop intelligent, self-healing and trusted wireless transceivers by introducing low-energy analog asymmetric encryption and adaptive self-healing. The proposed research consist of two research thrust areas: (1) low-energy trusted data communications with smart threat detection capability, and (2) intelligent self-healing. Both research thrusts benefit from energy-efficient analog neural networks (ANNs) to improve the functionality. Applying innovative asymmetric analog encryption on the modulated waveforms in the wireless transceiver, an energy-efficient end-to-end encrypted wireless communication link is created. The proposed design will use scalable linear time-invariant (LTI) to generate the keys needed for encryption and decryption. A low-energy ANN will monitor the transceiver parameters for any sign of potential attack and notify the encryption engine accordingly. The transceiver will also be authenticated using low-overhead device fingerprinting techniques. Similarly, a low-energy adaptive analog self-healing unit will be developed to increase the reliability by detecting the performance degradation and abnormalities, and actively adjust the transceiver parameters. The self-healing unit uses an innovative dual-loop adaptive structure. The first loop is built within the analog front-end (AFE) and is always engaged to monitor short-term performance degradations while the second loop relies on a low-energy ANN and samples the data selectively to correct for long-term defects. The ANNs used in both research thrusts are built using energy-efficient spiking neural networks (SNNs) and are co-designed to reduce the delay and area overhead. The outcome of this CAREER project will enhance the remote healthcare by accelerating the adoption of smart personalized solutions in medical community, particularly for long-term treatment of chronic diseases. It will also lay the foundation of a smart, self-healing and trusted electronic platform for biomedical applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在Covid-19时代,医学界越来越多地采用远程医疗保健作为传统医学的替代方案。无线结合生物医学设备是这种远程医疗保健解决方案的必不可少的一部分。随着患者寿命的增加,生物医学设备中使用的无线收发器的长期可靠性正在成为一个问题。此外,个性化医疗保健的敏感性引起了人们对数据安全的担忧。该职业项目将研究射频集成电路(RFIC)中的安全威胁和故障机制,并开发智能,低能的模拟解决方案,以创建可信赖的无线收发器,并具有检测和治愈损害的能力。该职业项目中提出的研究将从根本上改变远程医疗保健解决方案,通过开发一类新的微型自我修复和值得信赖的无线收发器,可以在设备级别提供高速连接。此外,该项目通过引入新颖的低能模拟加密技术来增强硬件安全性的基础知识,以用于安全数据通信。该项目中的教育计划将大大增强学生在通信和硬件安全方面的知识。通过与行业合作,学生将有机会与工业导师合作并获得电子知识。该计划还包含针对K-12中STEM教育的计划。作为这项工作的一部分,将向当地的高中生及其老师提供有关安全电子和数据通信的夏季研讨会,然后进行设计竞赛,以激发学生,特别是来自代表性不足的团体和少数群体的学生,以寻求与STEM相关领域的中学后教育。实验室访问和新兵训练营也将作为外展活动的一部分组织,以共享资源并促进知识转移给教师和学生。该职业项目的目标是通过引入低能的无能量非对称加密和适应性的自我保存来发展智能,自我修复和值得信赖的无线收发器。拟议的研究由两个研究推力领域组成:(1)具有智能威胁检测能力的低能信任数据通信以及(2)智能自我修复。两项研究都受益于节能模拟神经网络(ANN),以提高功能。在无线收发器的调制波形上应用创新的不对称模拟加密,创建了节能端到端加密无线通信链接。所提出的设计将使用可扩展的线性时间流动(LTI)来生成加密和解密所需的密钥。低能ANN将监视收发器参数,以确保潜在攻击的任何迹象,并相应地通知加密引擎。收发器还将使用低空设备指纹技术进行身份验证。同样,将开发低能自适应的自适应自我修复单元,以通过检测性能降解和异常来提高可靠性,并积极调整收发器参数。自我修复单元使用创新的双环自适应结构。第一个循环构建在模拟前端(AFE)内,并始终参与监测短期性能降解,而第二个循环依赖于低能量的ANN,并选择性地对数据进行样本以纠正长期缺陷。这两个研究推力中使用的ANN都使用节能尖峰神经网络(SNN)构建,并共同设计以减少延迟和面积的头顶。该职业项目的结果将通过加速在医学界采用智能个性化解决方案,特别是用于长期治疗慢性疾病,从而增强远程医疗保健。它还将为生物医学应用的智能,自我修复和值得信赖的电子平台奠定基础。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响审查标准,被认为值得通过评估来获得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hossein Lavasani其他文献
Hossein Lavasani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hossein Lavasani', 18)}}的其他基金
EAGER: Collaborative Research: Graphene Nanoelectromechanical Oscillators for Extreme Temperature and Harsh Environment Sensing
EAGER:合作研究:用于极端温度和恶劣环境传感的石墨烯纳米机电振荡器
- 批准号:
2221925 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
EAGER: SARE: Collaborative: Low Energy Secure Wireless Transceiversfor IoT Trusted Communications
EAGER:SARE:协作:用于物联网可信通信的低能耗安全无线收发器
- 批准号:
2029407 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
AI-2受体甲基趋化蛋白介导牛月形单胞菌对瘤胃碳水化合物趋化性的作用机制
- 批准号:32302685
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于国产AI芯片的自动布局布线优化算法研究
- 批准号:62306286
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
人工智能驱动的营销模式和消费者行为研究
- 批准号:72332006
- 批准年份:2023
- 资助金额:165 万元
- 项目类别:重点项目
基于“人工智能算法+高精度遥感数据”的棉花表型信息识别及解析
- 批准号:32360436
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
巴氏杀菌乳中金黄色葡萄球菌和肠毒素A风险预测和溯源的人工智能模型构建研究
- 批准号:32302241
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
6G Goal-Oriented AI-enabled Learning and Semantic Communication Networks (6G Goals)
6G目标导向的人工智能学习和语义通信网络(6G目标)
- 批准号:
10110118 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
EU-Funded
Low Carbon Impact AI-Enabled Net Zero Advisory Solution
低碳影响人工智能支持的净零咨询解决方案
- 批准号:
10112272 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
SME Support
CRII: CPS: FAICYS: Model-Based Verification for AI-Enabled Cyber-Physical Systems Through Guided Falsification of Temporal Logic Properties
CRII:CPS:FAICYS:通过时态逻辑属性的引导伪造,对支持人工智能的网络物理系统进行基于模型的验证
- 批准号:
2347294 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Preclinical validation of synthetic biomolecules to treat Breast Cancer from AI-enabled discovery of novel lncRNA therapeutic targets.
通过人工智能发现新型 lncRNA 治疗靶点,对合成生物分子治疗乳腺癌进行临床前验证。
- 批准号:
10110204 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Launchpad
COMET: Communications Enabled, AI/ML based Digital Twins for Smart city Logistics and Last Mile applications
COMET:支持通信、基于 AI/ML 的数字孪生,用于智慧城市物流和最后一英里应用
- 批准号:
10099265 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Collaborative R&D