EAGER: Collaborative Research: Graphene Nanoelectromechanical Oscillators for Extreme Temperature and Harsh Environment Sensing
EAGER:合作研究:用于极端温度和恶劣环境传感的石墨烯纳米机电振荡器
基本信息
- 批准号:2221925
- 负责人:
- 金额:$ 14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Sensors capable of operating at high temperatures with high precision and stability are of great interest and importance for emerging harsh and extreme environments, including but not limited to wildfire, aerospace, engine, nuclear plant, and other critical applications. Today’s mainstream state-of-the-art high-temperature sensing solutions involve multiple components distributed in distant zones at various temperatures and connected via high-temperature cables or fibers, resulting in bulky and ineffective sensing systems. Miniature high-temperature sensors are thus highly desirable, to provide real-time sensing and monitoring capabilities in small form factor, particularly toward future internet of things (IoT) adaptable to harsh environments. To date, integrated high-temperature (up to 1000C) sensors remain challenging due to the lack of device technologies in both sensing elements and interfacing circuits. In addition to developing a suitable platform, fundamental studies of the effects of ~1000C high temperature upon devices are greatly needed. This project is focused on innovating 1000C-capable sensors based on integrating graphene nanoelectromechanical resonators and graphene electronics, by exploiting the inherent high-temperature durability and unique combination of the electrical, thermal, and mechanical properties of graphene. This research will lay the foundation for developing ultracompact, ultralow-weight sensors that can operate at very high temperatures and in harsh environments, especially in energy and aerospace industry, and for environment and disaster monitoring (e.g., to assist drones for fighting wildfires). Findings in this research of atomically thin crystals and their devices will generate fascinating experiential learning materials and inspirations for students from K-12 through graduate school. The project also creates opportunities for broadening the participation of underrepresented and economically disadvantageous groups, and for partnership to bridge the gap between academia and industry in scaled manufacturing. This project aims to design, model, fabricate, and experimentally demonstrate a new class of low-power resonant nanoelectromechanical sensors for very high or extreme temperature, and harsh-environment applications where temperature of interest can exceed 1000C. The proposed research will achieve these goals by systematically investigating atomically thin graphene two-dimensional (2D) resonant nanoelectromechanical transducers, 2D nanoelectronic circuits, and their integrated systems. Built on understanding fundamental principles and limitations in state-of-the-art devices and systems, this project exploits multiphysics coupling among mechanical, electrical, and thermal domains at high temperature in graphene resonant nanoelectromechanical systems (NEMS) platform, to carry out efficient and judicious use of the internal transduction effects that uniquely exist in high-temperature environment, thanks to the inherent high-temperature endurance of graphene. Specifically, this EAGER project will demonstrate graphene NEMS oscillators with real-time sensing capabilities, by co-designing and fabricating graphene NEMS and graphene electronics that are chip-to-chip integrated using high-temperature interconnects. After successful construction of graphene oscillators, temperature sensing up to 1000C or even higher will be demonstrated, to validate sensing function of the graphene NEMS oscillators. This research will attain new innovations and insights in device-circuit co-design and nanosystems integration, since otherwise high-temperature environments deteriorate sensor performance for nearly all conventional materials and devices. The heterogeneous integration of the graphene NEMS and graphene electronics will enable next-generation highly durable miniaturized low-power sensors for high-temperature and extreme environments.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
能够在高温和稳定性的高温下运行的传感器对于新兴的伤害和极端环境(包括但不限于野火,航空航天,发动机,核电站和其他关键应用程序)具有极大的关注和重要性。当今主流的最先进的高温灵敏度解决方案涉及在各种温度下分布在遥远区域中的多个组件,并通过高温电缆或纤维连接,从而导致笨重且无效的敏感性系统。因此,微型高温传感器是非常可取的,可以提供实时传感器和监视小型的实时传感器,尤其是针对未来物联网(IoT)适应Harmss环境的功能。迄今为止,由于传感器元素和接口电路中缺乏设备技术,集成的高温(最多1000°C)传感器仍然受到挑战。除了开发合适的平台外,非常需要对〜1000C高温对设备的影响的基本研究。该项目的重点是基于整合石墨烯纳米机电谐振器和石墨烯电子设备的1000°C能力传感器,通过利用石墨烯的电气,热和机械性能的继承高温耐用性和独特的组合。这项研究将奠定基础,以开发可以在非常高温和HARMSH环境(尤其是能源和航空航天行业)以及环境和灾难监测(例如,协助无人机来战斗野火)中开发超级压缩传感器。在这项关于原子薄晶体及其设备的研究中的发现将为来自K-12到研究生院的学生提供迷人的体验学习材料和灵感。该项目还创造了机会,以扩大代表性不足和经济令人惊讶的群体的参与,并为了弥合学术界与行业之间的差距和制造业中的差距。该项目旨在设计,模型,制造和实验证明针对非常高或极端温度的新型低功率共振纳米机电传感器以及感兴趣温度的HARMH-ENOCRINCMENT应用,而感兴趣的温度可能超过1000°C。拟议的研究将通过系统地研究原子较薄的石墨烯二维(2D)谐振纳米机械传感器,2D纳米电机电路及其集成系统来实现这些目标。 Built on understanding fundamental principles and limitations in state-of-the-art devices and systems, this project exploits multiphysics coupling among mechanical, electrical, and thermal domains at high temperature in graphene resonant nanoelectromechanical systems (NEMS) platform, to carry out efficient and judicious use of the internal Transduction effects that uniquely exist in high-temperature environment, thank you to the inherit high-temperature endurance of石墨烯。具体而言,这个急切的项目将通过共同设计和制造石墨烯NEM和石墨烯电子设备来证明具有实时传感能力的石墨烯NEMS振荡器,这些振荡器是使用高温互连集成的芯片到芯片的。成功构建石墨烯振荡器后,将证明温度传感器最高甚至更高的温度传感器,以验证石墨烯NEMS振荡器的灵敏度函数。这项研究将在设备电路共同设计和纳米系统集成中获得新的创新和见解,因为其他高温环境对于几乎所有常规的材料和设备都会导致传感器的性能恶化。石墨烯NEMS和石墨烯电子产品的异质整合将使下一代高度耐用的小型低功率传感器用于高温和极端环境。该奖项反映了NSF的法定任务,并被认为是通过使用基金会的知识分子和更广泛影响的评估来审查Criteria来通过评估来通过评估来支持的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Hossein Lavasani的其他基金
CAREER: AI-Enabled Self-Healing and Trusted Wireless Transceivers for Biomedical Applications
职业:用于生物医学应用的人工智能自我修复和可信无线收发器
- 批准号:23391622339162
- 财政年份:2024
- 资助金额:$ 14万$ 14万
- 项目类别:Continuing GrantContinuing Grant
EAGER: SARE: Collaborative: Low Energy Secure Wireless Transceiversfor IoT Trusted Communications
EAGER:SARE:协作:用于物联网可信通信的低能耗安全无线收发器
- 批准号:20294072029407
- 财政年份:2020
- 资助金额:$ 14万$ 14万
- 项目类别:Standard GrantStandard Grant
相似国自然基金
数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
- 批准号:72372084
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
在线医疗团队协作模式与绩效提升策略研究
- 批准号:72371111
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
面向人机接触式协同作业的协作机器人交互控制方法研究
- 批准号:62373044
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于数字孪生的颅颌面人机协作智能手术机器人关键技术研究
- 批准号:82372548
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
A-型结晶抗性淀粉调控肠道细菌协作产丁酸机制研究
- 批准号:32302064
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:23336042333604
- 财政年份:2024
- 资助金额:$ 14万$ 14万
- 项目类别:Standard GrantStandard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:23476242347624
- 财政年份:2024
- 资助金额:$ 14万$ 14万
- 项目类别:Standard GrantStandard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
- 批准号:23442152344215
- 财政年份:2024
- 资助金额:$ 14万$ 14万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:23455812345581
- 财政年份:2024
- 资助金额:$ 14万$ 14万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:23455822345582
- 财政年份:2024
- 资助金额:$ 14万$ 14万
- 项目类别:Standard GrantStandard Grant