CAREER: Precise Mathematical Modeling and Experimental Validation of Radiation Heat Transfer in Complex Porous Media Using Analytical Renewal Theory Abstraction-Regressions

职业:使用分析更新理论抽象回归对复杂多孔介质中的辐射传热进行精确的数学建模和实验验证

基本信息

  • 批准号:
    2339032
  • 负责人:
  • 金额:
    $ 51.93万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-01-01 至 2028-12-31
  • 项目状态:
    未结题

项目摘要

Modeling radiation heat transfer in complex media presents a significant and burdensome challenge, particularly as the existing computational solutions have not adequately evolved to match the increasing growth, diversity, and complexity of real-world applications. This challenge is especially pronounced in fields where precise control and understanding of thermal processes are pivotal, such as in advanced materials engineering, energy-efficient building design, and high-performance computing systems. By developing advanced mathematical and computational models, this project aims to significantly improve the accuracy, speed, and applicability of radiation heat transfer estimations beyond the capabilities of existing methods. At the heart of these models is the novel use of Renewal, Ruin, and surplus risk theory in the mathematical derivations of radiative transfer in porous media. The broader impact of this endeavor extends to its potential in revolutionizing multi-scale energy transport quantification and management, influencing various applications from renewable energy to biomedical engineering and climatology. The societal contributions of the project extend beyond advancing scientific knowledge, encompassing the development of more efficient and sustainable energy technologies. The educational objectives of the project include fostering Science Technology Engineering and Mathematics engagement among K-12 students, seamlessly integrating with the overarching research goals.The technical objective of this CAREER project is to establish a novel analytical dual abstraction-regression framework for characterizing and solving macro radiative quantities in heterogeneous media. This approach combines abstraction models representing macro-configurations with point-wise radiative feature tensors with analytical regression models based on Renewal/Ruin and Powers-Gerber-Shiu risk surplus theories. These models are designed to precisely estimate radiative macro properties from homogenized micro tensors, filling a critical knowledge gap in the field. The project encompasses three main research objectives: (i) understanding the connections between risk surplus theory and radiation heat transfer characterization, (ii) developing dual abstraction-regression models for precise radiative estimations, and (iii) evaluating the framework's effectiveness through experimental validation. The intellectual significance of this project is rooted in its potential to transform the way radiation heat transfer is modeled in complex media, especially in porous structures where current methodologies fall short. The broader impact is far-reaching, with implications for enhancing solar energy systems, improving thermal management in electronic devices, and contributing to the development of new materials with optimized thermal properties. This research is expected to yield significant advancements in the fundamental understanding of radiation heat transfer, driving innovation in both theoretical and applied aspects of the science of radiation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在复杂介质中对辐射传热进行建模带来了重大且繁重的挑战,尤其是因为现有的计算解决方案尚未充分发展以符合现实应用应用程序的增长,多样性和复杂性的增长。在精确控制和理解热过程的领域中,这一挑战尤其明显,例如在高级材料工程,节能建筑设计和高性能计算系统中。通过开发高级数学和计算模型,该项目旨在显着提高辐射传热估计的准确性,速度和适用性,而不是现有方法的能力。这些模型的核心是在多孔介质中辐射传递的数学推导中的更新,毁灭和剩余风险理论的新颖使用。这项努力的更广泛影响扩展到革命性能源运输量化和管理方面的潜力,从而影响了从可再生能源到生物医学工程和气候学的各种应用。该项目的社会贡献不仅仅是促进科学知识,还涵盖了更高效,更可持续的能源技术的发展。该项目的教育目标包括培养科学技术工程和K-12学生之间的数学参与,与总体研究目标无缝集成。该职业项目的技术目标是建立一个新型的分析双抽象回归框架,以表征和解决异性媒体中的宏观辐射数量。这种方法结合了代表宏观配置的抽象模型,以及基于更新/毁灭和Powers-Gerber-Shiu风险盈余理论的分析回归模型的分析回归模型。这些模型旨在精确估计来自均质微张量的辐射宏特性,从而填补了该领域的关键知识差距。该项目包括三个主要的研究目标:(i)了解风险盈余理论与辐射传热特征之间的联系,(ii)为精确的辐射估计开发双重抽象回归模型,以及(iii)通过实验验证评估框架的有效性。该项目的智力意义源于其改变辐射传热方式在复杂介质中建模的方式的潜力,尤其是在当前方法不足的多孔结构中。更广泛的影响是深远的影响,对增强太阳能系统,改善电子设备的热管理以及有助于具有优化的热特性的新材料的开发。预计这项研究将在对辐射传热的基本理解,推动辐射科学的理论和应用方面的创新方面的基本理解方面取得重大进步。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子优点和更广泛的影响审查标准来评估值得通过评估的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shima Hajimirza其他文献

Using hybrid deep learning to predict spectral responses of quantum dot-embedded nanoporous thin-film solar cells
  • DOI:
    10.1016/j.jqsrt.2024.109258
  • 发表时间:
    2025-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Farhin Tabassum;George-Rafael Domenikos;Shima Hajimirza
  • 通讯作者:
    Shima Hajimirza

Shima Hajimirza的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shima Hajimirza', 18)}}的其他基金

EAGER:Predictive Surrogate Modeling and Analysis of Radiative Heat transfer in Porous Media
EAGER:多孔介质中辐射传热的预测替代模型和分析
  • 批准号:
    2054124
  • 财政年份:
    2020
  • 资助金额:
    $ 51.93万
  • 项目类别:
    Standard Grant
Enhancing Quantum Efficiency of Thin Film Solar Cells via Joint Characterization of Radiation and Recombination
通过辐射和复合的联合表征提高薄膜太阳能电池的量子效率
  • 批准号:
    2103008
  • 财政年份:
    2020
  • 资助金额:
    $ 51.93万
  • 项目类别:
    Standard Grant
Enhancing Quantum Efficiency of Thin Film Solar Cells via Joint Characterization of Radiation and Recombination
通过辐射和复合的联合表征提高薄膜太阳能电池的量子效率
  • 批准号:
    1931966
  • 财政年份:
    2019
  • 资助金额:
    $ 51.93万
  • 项目类别:
    Standard Grant
EAGER:Predictive Surrogate Modeling and Analysis of Radiative Heat transfer in Porous Media
EAGER:多孔介质中辐射传热的预测替代模型和分析
  • 批准号:
    1926882
  • 财政年份:
    2019
  • 资助金额:
    $ 51.93万
  • 项目类别:
    Standard Grant

相似国自然基金

表征精确性对数学学习的作用及其神经机制
  • 批准号:
    62077010
  • 批准年份:
    2020
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
数学物理中精确可解模型的代数方法
  • 批准号:
    11771015
  • 批准年份:
    2017
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目
结构低秩矩阵优化问题的多阶段凸松弛法研究
  • 批准号:
    11571120
  • 批准年份:
    2015
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
利用数学机械化方法求解Wick型随机孤子破裂方程的精确解
  • 批准号:
    11126270
  • 批准年份:
    2011
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目
基于精确实数计算数学原理的数字信号处理算法研究
  • 批准号:
    60903045
  • 批准年份:
    2009
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Precise dispersion control for NIR/MIR frequency comb generation by micro-Transfer Printing
通过微转移印刷生成 NIR/MIR 频率梳的精确色散控制
  • 批准号:
    23K03982
  • 财政年份:
    2023
  • 资助金额:
    $ 51.93万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Precise determination of plate structure beneath Kii Peninsula by full waveform inversion of receiver functions
通过接收函数全波形反演精确确定纪伊半岛下方的板块结构
  • 批准号:
    21K03722
  • 财政年份:
    2021
  • 资助金额:
    $ 51.93万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A study on the precise measurement of rotational torque using electromagnetic force
利用电磁力精确测量旋转扭矩的研究
  • 批准号:
    20K04510
  • 财政年份:
    2020
  • 资助金额:
    $ 51.93万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of High-speed and High-accuracy Design Optimization Method with Precise Behavior of Space-time Electromagnetic Field in Electrical Machines
电机时空电磁场精确行为的高速高精度设计优化方法的开发
  • 批准号:
    19K04357
  • 财政年份:
    2019
  • 资助金额:
    $ 51.93万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Feynman integral reduction for precise particle physics
精确粒子物理的费曼积分简化
  • 批准号:
    19K03831
  • 财政年份:
    2019
  • 资助金额:
    $ 51.93万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了