Tools to Control and Monitor Van der Waals Forces between Nanoparticles: Quantitative Insights on Biological, Environmental, and Fungal Cell Interactions.

控制和监测纳米颗粒之间范德华力的工具:对生物、环境和真菌细胞相互作用的定量见解。

基本信息

  • 批准号:
    2335597
  • 负责人:
  • 金额:
    $ 69.87万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-02-01 至 2027-01-31
  • 项目状态:
    未结题

项目摘要

The behavior of matter changes dramatically as the size of the matter decreases—especially when the size decreases to the nanometer regime. These very small pieces of matter are called nanoparticles, and these nanoparticles are useful to people. For example, home pregnancy tests use nanoparticles, Covid-19 vaccines use nanoparticles, and state-of-the-art televisions use nanoparticles. Nanoparticles can also be used to deliver materials (e.g., drugs or genetic material) to cells. One challenge with nanoparticles is that they are often very unstable and clump together, and these clumps of nanoparticles do not have the same properties as individual nanoparticles. Thus, this research will create new ways of controlling how nanoparticles clump together. The research is based on prior work showing that tiny pieces of protein can cause nanoparticles to assemble in a reversible way. Thus, the nano-scale properties of the material can be turned on and off based on the presence of the protein. This research will first study different kinds of protein to determine how the clumping and de-clumping occur. The research will then study different kinds of nanoparticles to understand the range of nanoparticle types that can be used. Activities include both laboratory-based research and computational modeling. A final phase of the research will focus on fungal cells and the interactions of these nanoparticles with fungal cells. Fungi are important because they can cause disease, be consumed as food, or be used for biomanufacturing. The outcome of this research will be new knowledge about how to store and stabilize nanoparticles as well as new knowledge about how to control the properties of fungal cells with nanoparticles. Nanoparticles are colloidally stable when the repulsive electrostatic and steric forces are balanced by the attractive Van der Waals forces. Prior work showed that a di-arginine peptide could induce reversible nanoparticle aggregation (and thus plasmonic coupling) by modulating these surface forces. This research will derive a coherent mechanistic understanding of how the peptide length, amino acid sequence, and nanoparticle surface impact this reversible aggregation. Objective 1 will study the structure/function relationship of peptide length and charge: The research will monitor nanoparticle aggregation and resuspension via plasmonic coupling including in biological and environmental media (e.g., saliva and seawater). Objective 2 will change the nanoparticle size to confirm the role of Van der Waals forces and optimize the color change during assembly/disassembly. Objectives 1 and 2 will combine computational modeling and laboratory assays. Objective 3 will use these lessons learned to measure the interaction and transport of aggregated and free nanoparticles across fungal cell walls as a function of protease expression. This work will create new knowledge in different domains: 1) how plasmonic materials assemble and disassemble; 2) how to store nanoparticles in a dry and aggregated state; 3) how to redisperse nanoparticles in biological and environmental media; and 4) how aggregated and free nanoparticles interact with fungal cells and fungal proteases. PI Jokerst and Co-I Miller will create “plasmonic pride flags” via different plasmonic nanoparticles and teach the underlying science to a Hispanic Serving Institution in SanDiego as well as LGBT+ advocacy groups. Through these student groups, the PIs activities will help retain LGBT+ students in STEM. Additional educational objectives include hosting visiting summer students who will learn computational methods with Co-I Pascal.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
物质的行为随着物质的大小减小而发生巨大变化,尤其是当大小降低到纳米机制时。这些非常小的物质称为纳米颗粒,这些纳米颗粒对人有用。例如,家庭妊娠试验使用纳米颗粒,Covid-19疫苗使用纳米颗粒,而最先进的电视使用纳米颗粒。纳米颗粒也可用于将材料(例如药物或通用材料)传递到细胞。纳米颗粒的一个挑战是它们通常非常不稳定和聚集在一起,而这些纳米颗粒簇的特性与单个纳米颗粒的特性不同。这是这项研究将创建控制纳米颗粒聚集在一起的新方法。该研究基于先前的工作,表明微小的蛋白质会导致纳米颗粒以可逆的方式组装。这是根据蛋白质的存在可以打开和关闭材料的纳米级特性。这项研究将首先研究不同种类的蛋白质,以确定聚类和下聚集的方式。然后,该研究将研究不同种类的纳米颗粒,以了解可以使用的纳米颗粒类型的范围。活动包括基于实验室的研究和计算建模。研究的最后阶段将集中于真菌细胞以及这些纳米颗粒与真菌细胞的相互作用。真菌很重要,因为它们可以引起疾病,被用作食物或用于生物制造。这项研究的结果将是有关如何存储和稳定纳米颗粒的新知识,以及有关如何控制使用纳米颗粒的真菌细胞特性的新知识。当排斥静电和空间力通过有吸引力的范德华力平衡时,纳米颗粒在胶体上稳定。先前的工作表明,二氨酸肽可以通过调节这些表面力来诱导可逆的纳米颗粒聚集(从而塑料偶联)。这项研究将得出对肽长度,氨基酸序列和纳米颗粒表面如何影响这种可逆聚集的连贯的机械理解。目标1将研究肽长度和电荷的结构/功能关系:该研究将通过塑料耦合(包括生物学和环境培养基(例如唾液和海水)中的塑料耦合来监测纳米颗粒的聚集和重悬。目标2将改变纳米颗粒的大小,以确认范德华力的作用,并在组装/拆卸过程中优化颜色变化。目标1和2将结合计算建模和实验室作为分类。目标3将使用这些经验教训来测量跨真菌细胞壁的聚合和游离纳米颗粒的相互作用和运输,这是蛋白质表达的函数。这项工作将在不同领域创造新知识:1)如何将纳米颗粒存储在干燥和汇总状态下; 3)如何在生物学和环境媒体中重新分散纳米颗粒; 4)聚合和游离纳米颗粒如何与真菌细胞和真菌蛋白酶相互作用。 Pi Jokerst和Co-i Miller将通过不同的等离子纳米颗粒创建“等离子骄傲旗”,并向Sandiego的西班牙裔服务机构以及LGBT+倡导组织教授基础科学。通过这些学生团体,PIS活动将有助于将LGBT+学生保留在STEM中。其他教育对象包括托管访问夏季学生,他们将以Co-i Pascal学习计算方法。该奖项反映了NSF的法定任务,并通过使用基金会的知识分子优点和更广泛的影响评估标准来评估,被认为是珍贵的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jesse Jokerst其他文献

Jesse Jokerst的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jesse Jokerst', 18)}}的其他基金

Biomaterials built by biology: Mechanism and applications of hyperbranched fractal plasmonic structures
生物学构建的生物材料:超支化分形等离子体结构的机理和应用
  • 批准号:
    2242375
  • 财政年份:
    2023
  • 资助金额:
    $ 69.87万
  • 项目类别:
    Standard Grant
FDA Scholar Program: Blood-Mimicking Phantoms for Assessing Oximetry Performance of Photoacoustic Imaging Systems
FDA 学者计划:用于评估光声成像系统血氧饱和度性能的模拟血液模型
  • 批准号:
    2149602
  • 财政年份:
    2022
  • 资助金额:
    $ 69.87万
  • 项目类别:
    Standard Grant
I-Corps: Development of a Periodontal Ultrasound/Photoacoustic Imaging Device
I-Corps:牙周超声/光声成像设备的开发
  • 批准号:
    2129540
  • 财政年份:
    2021
  • 资助金额:
    $ 69.87万
  • 项目类别:
    Standard Grant
NSF/FDA SIR: Morphologically Complex Tissue-Mimicking Phantoms for Evaluating Tissue Scattering Artifacts in Photoacoustic Imaging
NSF/FDA SIR:形态复杂的组织模拟体模,用于评估光声成像中的组织散射伪影
  • 批准号:
    1937674
  • 财政年份:
    2019
  • 资助金额:
    $ 69.87万
  • 项目类别:
    Standard Grant
CAREER: Expandable sol-gel nanomaterials as therapeutic tools and imaging agents
职业:可膨胀溶胶-凝胶纳米材料作为治疗工具和成像剂
  • 批准号:
    1845683
  • 财政年份:
    2019
  • 资助金额:
    $ 69.87万
  • 项目类别:
    Continuing Grant
Advanced Polymeric Tissue-Mimicking Materials and Phantoms for Evaluation of Multispectral Photoacoustic Imaging Systems
用于评估多光谱光声成像系统的先进聚合物组织模拟材料和模型
  • 批准号:
    1842387
  • 财政年份:
    2018
  • 资助金额:
    $ 69.87万
  • 项目类别:
    Standard Grant

相似国自然基金

高马赫数发动机密封界面液膜急变跨速汽化机理与型槽热平衡控制设计
  • 批准号:
    52375212
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于矩阵方法的电价博弈分析与控制策略研究
  • 批准号:
    62303170
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
在轨扰动影响下空间燃料电池系统的流动沸腾传质机理与抗扰控制研究
  • 批准号:
    52377215
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
分布式电驱动智能车辆主动交互机理及控制机制研究
  • 批准号:
    52372377
  • 批准年份:
    2023
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
面向在轨大型结构的空间机器人多机协同接管控制方法研究
  • 批准号:
    52305036
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Novel non-invasive approach for predicting retinopathy of prematurity in premature neonates
预测早产儿视网膜病变的新型非侵入性方法
  • 批准号:
    10665438
  • 财政年份:
    2023
  • 资助金额:
    $ 69.87万
  • 项目类别:
User-friendly Analysis Platform for Decentralized Multi-site Diffusion MRI Studies
用于分散式多站点扩散 MRI 研究的用户友好分析平台
  • 批准号:
    10724720
  • 财政年份:
    2023
  • 资助金额:
    $ 69.87万
  • 项目类别:
Testing Technology-Based Implementation Strategies for a Family-Based Pediatric Health Behavior Intervention in Community-Based Primary Care: A Cluster Randomized Factorial Trial
测试基于技术的社区初级保健中基于家庭的儿科健康行为干预的实施策略:整群随机析因试验
  • 批准号:
    10738964
  • 财政年份:
    2023
  • 资助金额:
    $ 69.87万
  • 项目类别:
2/2: PREcision VENTilation to attenuate Ventilation-Induced Lung Injury (PREVENT VILI)
2/2:精确通气以减轻通气引起的肺损伤(预防 VILI)
  • 批准号:
    10738959
  • 财政年份:
    2023
  • 资助金额:
    $ 69.87万
  • 项目类别:
Synthetic mRNA Control Set for Nanopore-Based Pseudouridine Modification Profiling in Human Transcriptomes
用于人类转录组中基于纳米孔的假尿苷修饰分析的合成 mRNA 对照集
  • 批准号:
    10582330
  • 财政年份:
    2023
  • 资助金额:
    $ 69.87万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了