CAREER: Expandable sol-gel nanomaterials as therapeutic tools and imaging agents

职业:可膨胀溶胶-凝胶纳米材料作为治疗工具和成像剂

基本信息

  • 批准号:
    1845683
  • 负责人:
  • 金额:
    $ 54.31万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-06-15 至 2024-11-30
  • 项目状态:
    已结题

项目摘要

Technical AbstractThe long-term goal of this research is to develop novel biomaterials for medical imaging and therapy and to educate the public and future materials scientists about biomaterials research. The research objective is to create novel biomaterials with both imaging and therapeutic capabilities. Here, the PI will synthesize P2O5-CaO-Na2O phosphate sol-gel nanoparticles and will modulate the concentration of cations to control the structure-function properties including biodegradation time. One surprising feature of these materials is that they swell up to 500% larger during their biodegradation in aqueous environments. Thus, the PI hypothesizes that one can control this swelling by coating the nanoparticles with a responsive hydrophobic shell and use this size change to ablate cancer cells. By building the shell with site-selective cleavage sites, the nanoparticle core would be exposed to the cytosol and swell only in the presence of defined chemical cues. This swelling would then mechanically destroy the cells of interest. These materials also have an acoustic impedance mismatch with tissue and can report the cell killing process via ultrasound. The educational objective is to disseminate the research findings to the scientific community, graduate and undergraduate trainees, as well as high school students via focused seminars and hands-on training with a portable ultrasound scanner. The broader impacts of this CAREER award will focus on LGBTQ students who typically lack visibility and community in the STEM fields. The PI will offer mentorship connections, networking opportunities, and professional/leadership development for our LGBT STEM students.Non-Technical AbstractThis project is creating a biomaterial based on phosphate ions, which are a very common type of salt in the human body. The PI will create very small particles of this phosphate-based biomaterial and use it to image and treat cancer. The remarkable feature of this biomaterial is that it swells when it degrades-size changes up to 5-fold were shown in preliminary data. This is useful because when these materials swell inside of cancer cells, they will destroy the dangerous tissue. This project will design the particles such that they only swell in the presence of biomarkers found on the surface of the cancer cells to prevent damage to other cells. A second important feature of this idea is that doctors can image the location of the particles with ultrasound. This is because sound waves will echo off the surface of the particles. Importantly, as the particles swell, even more sound waves will be reflected. Thus, doctors can use the images to understand the location of the particles and whether they have been activated by the cancer cells or not. The benefit to society will be a less traumatic and more effective cancer treatment, which includes an imaging signal physicians can use to customize treatment. These efforts will also educate the next generation of engineers and scientists using hands-on ultrasound modules in the teaching labs at UC San Diego.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
技术摘要这项研究的长期目标是开发用于医学成像和治疗的新型生物材料,并教育公众和未来的材料科学家有关生物材料研究的研究。研究目标是通过成像和治疗能力来创建新型的生物材料。在这里,PI将合成P2O5-CAO-NA2O磷酸溶胶 - 凝胶纳米颗粒,并将调节阳离子的浓度,以控制包括生物降解时间在内的结构功能。这些材料的一个令人惊讶的特征是,在水性环境中,它们在生物降解过程中膨胀了500%。因此,PI假设可以通过用响应式疏水性壳涂纳米颗粒来控制这种肿胀,并将这种尺寸的变化变化以消融癌细胞。通过使用位点选择性切割位点构建壳,纳米颗粒芯只能在存在定义的化学提示的情况下暴露于细胞质和膨胀。然后,这种肿胀会机械地破坏感兴趣的细胞。这些材料还与组织具有声阻抗不匹配,可以通过超声报告细胞杀死过程。教育目标是通过专注的研讨会和便携式超声扫描仪通过专注的研讨会和动手培训将研究结果传播给科学界,研究生和本科学员,以及高中生。该职业奖的更广泛影响将集中于通常缺乏STEM领域知名度和社区的LGBTQ学生。 PI将为我们的LGBT STEM学生提供指导连接,网络机会和专业/领导力开发。Non-technical Abstrack This This Turnis Project正在创建基于磷酸盐离子的生物材料,这是人体中非常普遍的盐类型。 PI将产生这种基于磷酸盐的生物材料的非常小的颗粒,并将其用于形象和治疗癌症。这种生物材料的显着特征是,在初步数据中显示了降解大小的变化最多5倍时膨胀。这很有用,因为当这些材料在癌细胞内部膨胀时,它们会破坏危险的组织。该项目将设计颗粒,使它们仅在癌细胞表面存在的生物标志物存在下膨胀,以防止对其他细胞的损害。这个想法的第二个重要特征是,医生可以超声检查颗粒的位置。这是因为声波会在颗粒的表面上回荡。重要的是,随着颗粒膨胀,会反映更多的声波。因此,医生可以使用图像来了解颗粒的位置以及它们是否被癌细胞激活。对社会的好处将是一种不太创伤和更有效的癌症治疗方法,其中包括成像信号医生可以用来定制治疗。这些努力还将在圣地亚哥分校的教学实验室中使用动手超声模块来教育下一代工程师和科学家。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子的评估来支持的,并具有更广泛的影响。

项目成果

期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Self-assembled peptide-dye nanostructures for in vivo tumor imaging and photodynamic toxicity
  • DOI:
    10.1038/s44303-024-00008-4
  • 发表时间:
    2024-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Borum;Maurice Retout;Matthew N Creyer;Yu-Ci Chang;Karlo Gregorio;Jesse V. Jokerst
  • 通讯作者:
    R. Borum;Maurice Retout;Matthew N Creyer;Yu-Ci Chang;Karlo Gregorio;Jesse V. Jokerst
Peptide-Driven Proton Sponge Nano-Assembly for Imaging and Triggering Lysosome-Regulated Immunogenic Cancer Cell Death.
肽驱动的质子海绵纳米组件用于成像和触发溶酶体调节的免疫原性癌细胞死亡。
  • DOI:
    10.1002/adma.202307679
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    He,Tengyu;Wen,Jing;Wang,Wenjian;Hu,Zeliang;Ling,Chuxuan;Zhao,Zhongchao;Cheng,Yong;Chang,Yu-Ci;Xu,Ming;Jin,Zhicheng;Amer,Lubna;Sasi,Lekshmi;Fu,Lei;Steinmetz,NicoleF;Rana,TariqM;Wu,Peng;Jokerst,JesseV
  • 通讯作者:
    Jokerst,JesseV
Bio-Inspired Degradable Polyethylenimine/Calcium Phosphate Micro-/Nano-Composites for Transient Ultrasound and Photoluminescence Imaging
  • DOI:
    10.1021/acs.chemmater.2c00857
  • 发表时间:
    2022-08
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Tengyu He;David G. Bradley;Ming Xu;Shu-Ting Ko;Baiyan Qi;Yi Li;Yong Cheng;Zhicheng Jin
  • 通讯作者:
    Tengyu He;David G. Bradley;Ming Xu;Shu-Ting Ko;Baiyan Qi;Yi Li;Yong Cheng;Zhicheng Jin
Phenolic-enabled nanotechnology: versatile particle engineering for biomedicine.
  • DOI:
    10.1039/d0cs00908c
  • 发表时间:
    2021-04-07
  • 期刊:
  • 影响因子:
    46.2
  • 作者:
    Wu D ;Zhou J ;Creyer MN ;Yim W ;Chen Z ;Messersmith PB ;Jokerst JV
  • 通讯作者:
    Jokerst JV
Versatile Polymer Nanocapsules via Redox Competition.
  • DOI:
    10.1002/anie.202110829
  • 发表时间:
    2021-12-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhou J;Xu M;Jin Z;Borum RM;Avakyan N;Cheng Y;Yim W;He T;Zhou J;Wu Z;Mantri Y;Jokerst JV
  • 通讯作者:
    Jokerst JV
共 12 条
  • 1
  • 2
  • 3
前往

Jesse Jokerst的其他基金

Tools to Control and Monitor Van der Waals Forces between Nanoparticles: Quantitative Insights on Biological, Environmental, and Fungal Cell Interactions.
控制和监测纳米颗粒之间范德华力的工具:对生物、环境和真菌细胞相互作用的定量见解。
  • 批准号:
    2335597
    2335597
  • 财政年份:
    2024
  • 资助金额:
    $ 54.31万
    $ 54.31万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Biomaterials built by biology: Mechanism and applications of hyperbranched fractal plasmonic structures
生物学构建的生物材料:超支化分形等离子体结构的机理和应用
  • 批准号:
    2242375
    2242375
  • 财政年份:
    2023
  • 资助金额:
    $ 54.31万
    $ 54.31万
  • 项目类别:
    Standard Grant
    Standard Grant
FDA Scholar Program: Blood-Mimicking Phantoms for Assessing Oximetry Performance of Photoacoustic Imaging Systems
FDA 学者计划:用于评估光声成像系统血氧饱和度性能的模拟血液模型
  • 批准号:
    2149602
    2149602
  • 财政年份:
    2022
  • 资助金额:
    $ 54.31万
    $ 54.31万
  • 项目类别:
    Standard Grant
    Standard Grant
I-Corps: Development of a Periodontal Ultrasound/Photoacoustic Imaging Device
I-Corps:牙周超声/光声成像设备的开发
  • 批准号:
    2129540
    2129540
  • 财政年份:
    2021
  • 资助金额:
    $ 54.31万
    $ 54.31万
  • 项目类别:
    Standard Grant
    Standard Grant
NSF/FDA SIR: Morphologically Complex Tissue-Mimicking Phantoms for Evaluating Tissue Scattering Artifacts in Photoacoustic Imaging
NSF/FDA SIR:形态复杂的组织模拟体模,用于评估光声成像中的组织散射伪影
  • 批准号:
    1937674
    1937674
  • 财政年份:
    2019
  • 资助金额:
    $ 54.31万
    $ 54.31万
  • 项目类别:
    Standard Grant
    Standard Grant
Advanced Polymeric Tissue-Mimicking Materials and Phantoms for Evaluation of Multispectral Photoacoustic Imaging Systems
用于评估多光谱光声成像系统的先进聚合物组织模拟材料和模型
  • 批准号:
    1842387
    1842387
  • 财政年份:
    2018
  • 资助金额:
    $ 54.31万
    $ 54.31万
  • 项目类别:
    Standard Grant
    Standard Grant

相似国自然基金

面向智能网卡的可扩展FPGA包分类技术研究
  • 批准号:
    62372123
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向高并发软件的可扩展建模与分析技术研究
  • 批准号:
    62302375
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于随机化的高效可扩展深度学习算法研究
  • 批准号:
    62376131
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
包含时空维度的可扩展光MIMO解调芯片与均衡器
  • 批准号:
    62335019
  • 批准年份:
    2023
  • 资助金额:
    225.00 万元
  • 项目类别:
    重点项目
基于可扩展去蜂窝架构的大规模低时延高可靠通信研究
  • 批准号:
    62371039
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Maglev LVAD with expandable stented inlet and anti-thrombotic coating to improve hemocompatibility
磁悬浮 LVAD 具有可扩张支架入口和抗血栓涂层,可改善血液相容性
  • 批准号:
    10736998
    10736998
  • 财政年份:
    2023
  • 资助金额:
    $ 54.31万
    $ 54.31万
  • 项目类别:
Scaling Affordable Minigrids through Expandable 2nd life Batteries (SAMTE)
通过可扩展的二次电池 (SAMTE) 扩展经济实惠的迷你电网
  • 批准号:
    10045436
    10045436
  • 财政年份:
    2023
  • 资助金额:
    $ 54.31万
    $ 54.31万
  • 项目类别:
    Collaborative R&D
    Collaborative R&D
STTR Phase I: Innovative Expandable Dental Sealer
STTR 第一阶段:创新的可扩展牙科封闭剂
  • 批准号:
    2321456
    2321456
  • 财政年份:
    2023
  • 资助金额:
    $ 54.31万
    $ 54.31万
  • 项目类别:
    Standard Grant
    Standard Grant
Imaging Substudy of the BEST Trial: Balloon-Expandable versus Self-expanding Transcatheter Heart Valve for Treatment of Symptomatic Native Aortic Valve Stenosis
最佳试验的影像学子研究:球囊扩张式与自扩张式经导管心脏瓣膜治疗症状性自体主动脉瓣狭窄
  • 批准号:
    460606
    460606
  • 财政年份:
    2022
  • 资助金额:
    $ 54.31万
    $ 54.31万
  • 项目类别:
    Operating Grants
    Operating Grants
Study of Pressure Sensor Containing Thermally Expandable Polymer for Measurement of Plantar Pressure in Obese and Diabetic Patients
含热膨胀聚合物压力传感器测量肥胖和糖尿病患者足底压力的研究
  • 批准号:
    22K20500
    22K20500
  • 财政年份:
    2022
  • 资助金额:
    $ 54.31万
    $ 54.31万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
    Grant-in-Aid for Research Activity Start-up