Assessing Atmospheric Impacts of the Hunga Tonga-Hunga Ha'apai Volcanic Eruption and Using It as a Natural Experiment to Evaluate an Earth System Model

评估洪加汤加-洪加哈派火山喷发的大气影响并将其用作评估地球系统模型的自然实验

基本信息

项目摘要

Volcanic eruptions can affect weather and climate through several different mechanisms. For example, highly explosive eruptions, like that of Mt. Pinatubo in 1991, often produce sulfur-containing droplets and particles high in Earth’s atmosphere. There, these aerosols scatter sunlight back to space and can cool global climate for more than a year. On January 15, 2022, the Hunga Tonga–Hunga Ha'apai volcano erupted explosively in the South Pacific. Satellite observations showed that the eruption introduced surprisingly little sulfur to the atmosphere but injected an enormous amount of water vapor into the stratosphere, about 10-20 miles above Earth’s surface. Water vapor is a greenhouse gas and is particularly effective at warming climate when it is in the stratosphere, where only trace amounts of water generally exist. The eruption increased the total global stratospheric water vapor content by roughly 10%, representing the largest single-source injection of stratospheric water vapor ever observed from space, and furthermore this excess water could persist for 5-10 years. The Tonga eruption therefore represents an unprecedented natural experiment on Earth’s atmosphere. This investigation will use observations and modeling to assess the atmospheric impacts of the eruption, including its effects on Earth’s energy budget via alterations to the amount of sunlight and infrared energy absorbed and emitted by the planet. The investigators will assess how the eruption affected stratospheric temperatures, circulation patterns throughout the atmosphere, and the annual ozone hole formation over Antarctica, which may be perturbed through chemical and physical mechanisms related to the eruption. More broadly, this project will evaluate how well an Earth System Model captures the observed perturbations to Earth’s atmosphere in the years following the eruption and identify improvements to models that remedy any deficiencies that are found.In a broader sense, this project will contribute to an improved understanding of the atmospheric and climate impacts and risks to global society posed by large volcanic eruptions, particularly those that erupt beneath the ocean surface like the 2022 Tonga event. Records of past volcanic activity recorded in ice cores from Greenland and Antarctica indicate that eruptions ten times more powerful than the 2022 Tonga event occur roughly once every 625 years, with potentially severe impacts on civilization. The scientists involved in this project will conduct simulations of such events to explore their potential impacts. They will also adapt an Earth System Model so that it can be used more readily by the scientific community to comprehensively study climate impacts from volcanic eruptions, for example by improving the ability of the model to track and isolate the influences of volcanic water vapor, sulfur, and ash. Finally, the investigators will train and mentor a Ph.D. student for this project and expand the material on volcano-climate interactions presented in the graduate- and undergraduate-level courses.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
火山喷发可以通过多种不同的机制影响天气和气候,例如,像 1991 年皮纳图博山那样的高度爆炸性喷发,通常会在地球大气层中产生含硫液滴和颗粒,这些气溶胶将阳光散射回太空。 2022 年 1 月 15 日,洪加汤加-洪加哈派火山喷发。卫星观测表明,这次喷发向大气中引入的硫量极少,但却向距地球表面约 10 至 20 英里的平流层注入了大量的水蒸气。在气候变暖的平流层中,通常只存在微量的水,这次喷发使全球平流层水蒸气含量增加了大约10%,这是最大的单源注入。从太空观测到的平流层水蒸气最多,而且这种过量的水可能会持续 5-10 年,因此,汤加火山喷发是对地球大气层的一次前所未有的自然实验,这项调查将利用观测和建模来评估火山喷发对大气的影响。包括通过改变地球吸收和发射的阳光和红外能量对地球能源预算的影响。研究人员将评估火山喷发如何影响平流层温度、整个大气的环流模式以及年度。南极洲上空臭氧空洞的形成,可能会受到与火山喷发相关的化学和物理机制的扰动。更广泛地说,该项目将评估地球系统模型在火山喷发后几年内捕捉到的地球大气扰动的情况,并确定改进措施。弥补发现的任何缺陷的模型。从更广泛的意义上讲,该项目将有助于更好地了解大型火山喷发,特别是那些在地下喷发的火山喷发对全球社会造成的大气和气候影响和风险格陵兰岛和南极洲冰芯中记录的过去火山活动记录表明,大约每 625 年发生一次比 2022 年汤加事件强大十倍的火山喷发,这可能对文明造成严重影响。参与该项目的人员将对此类事件进行模拟,以探索其潜在影响。他们还将调整地球系统模型,以便科学界更容易地使用它来全面研究气候影响。最后,研究人员将为该项目培训和指导一名博士生,并扩展材料。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark Flanner其他文献

Mark Flanner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark Flanner', 18)}}的其他基金

Collaborative Research: Closing the Gaps in Climate Models' Surface Albedo Schemes of Processes Driving the Darkening of the Greenland Ice Sheet
合作研究:缩小气候模型表面反照率方案中导致格陵兰冰盖变暗的过程的差距
  • 批准号:
    1712695
  • 财政年份:
    2017
  • 资助金额:
    $ 51.88万
  • 项目类别:
    Standard Grant
CAREER: Linking cryospheric processes across scales to model non-linear albedo feedback
职业:跨尺度连接冰冻圈过程以模拟非线性反照率反馈
  • 批准号:
    1253154
  • 财政年份:
    2013
  • 资助金额:
    $ 51.88万
  • 项目类别:
    Standard Grant
Collaborative Research: Aerosol concentrations, sources, and transport pathways within the Arctic polar dome during recent millennia
合作研究:近千年来北极穹顶内的气溶胶浓度、来源和传输路径
  • 批准号:
    1023387
  • 财政年份:
    2010
  • 资助金额:
    $ 51.88万
  • 项目类别:
    Standard Grant

相似国自然基金

大气颗粒物干沉降参数化方案改进及其对我国中东部PM2.5模拟影响评估
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于苯多羧酸法的双碳同位素技术评估大气沉降对北部湾溶解性黑碳的影响
  • 批准号:
    42203032
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于多重分形的自然大气中微塑料老化影响多环芳烃赋存的模拟及生态风险评估
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    35 万元
  • 项目类别:
    地区科学基金项目
定量评估南亚和东南亚生物质燃烧排放对我国西南部大气环境的影响
  • 批准号:
    41877404
  • 批准年份:
    2018
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
大气污染影响先天性心脏病发生的出生队列研究
  • 批准号:
    81872586
  • 批准年份:
    2018
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目

相似海外基金

EMBRACE-AGS-Seed: Quantification of Halogen Emission Impacts on Atmospheric Oxidation Rates in Urban Atmospheres
EMBRACE-AGS-Seed:量化卤素排放对城市大气氧化率的影响
  • 批准号:
    2409408
  • 财政年份:
    2024
  • 资助金额:
    $ 51.88万
  • 项目类别:
    Standard Grant
Using Earth-Observation data to classify Atmospheric Rivers and investigate their impacts on the stability of West Antarctic ice shelves
利用地球观测数据对大气河流进行分类并研究其对南极西部冰架稳定性的影响
  • 批准号:
    2886186
  • 财政年份:
    2023
  • 资助金额:
    $ 51.88万
  • 项目类别:
    Studentship
Causes and impacts of Greenland atmospheric Blocking changes
格陵兰岛大气阻塞变化的原因和影响
  • 批准号:
    NE/W005875/1
  • 财政年份:
    2023
  • 资助金额:
    $ 51.88万
  • 项目类别:
    Research Grant
CAREER: Understanding the Impacts of Future Sea Ice Loss on Large-Scale Patterns of Atmospheric Variability and Cold Air Outbreaks
职业:了解未来海冰流失对大气变化和冷空气爆发的大规模模式的影响
  • 批准号:
    2236771
  • 财政年份:
    2023
  • 资助金额:
    $ 51.88万
  • 项目类别:
    Standard Grant
CAREER: Impacts of the Chemical and Physical Properties of Surfactants on the Hygroscopic Growth of Atmospheric Aerosol Particles
职业:表面活性剂的化学和物理性质对大气气溶胶颗粒吸湿生长的影响
  • 批准号:
    2239105
  • 财政年份:
    2023
  • 资助金额:
    $ 51.88万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了