Observable Divergence Theorem: A new technique for deriving averaged equations for multi-scale shock problems

可观测散度定理:一种推导多尺度冲击问题平均方程的新技术

基本信息

  • 批准号:
    1134229
  • 负责人:
  • 金额:
    $ 30.01万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-01 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

1134229 MohseniAn objective of modeling of multiscale problems, such as shocks in complex flows, is to derive an evolution equation for large scale quantities without resolving the details of the small scales. This proposal aims at a new technique for deriving fluid equations capable of regularizing discontinuities in the form of shocks without the introduction of viscous dissipation. This is achieved by defining observable fluxes and observable divergence. An observable divergence theorem is then applied to the conservation of mass, momentum, and energy of an inviscid fluid flow. A set of equations, called the observable Euler equations, are derived where they satisfy the conservation laws at the observable scale, alpha. The observable scale is often dictated by our ability to observe a fluid property. This is the resolution scale in numerical simulations or the minimum resolvable scale of an apparatus in an experiment. The classical Euler equations will be recovered if the observable scale approaches zero. This effort is aimed towards theoretical, computational, and physical understanding of the observability and its application to single phase fluid problems with shocks. While the proposed ideas are tested in the context of shock regularization in fluids, this initiative has the potential to be applied to a wide variety of other multi-scale problems such as elasticity, magnetohydrodynamics, multi-phase flows, etc. Reduction in uncertainty of turbulent aero and hydrodynamic predictions will help manufacturers of most related technologies to reduce the cost of their machines and enhance their performances. Considering the role that such problems play in our society, important socio-economical impacts are expected. Undergraduate research assistants will be sought via supplementary REU support, and can be expected to come from these fields. The PI's existing disciplinary courses will be enriched with results from this work, expanding student multidisciplinary exposure. A web site will be developed to disseminate information to the general public.
1134229 Mohseni 多尺度问题(例如复杂流动中的冲击)建模的目标是导出大尺度量的演化方程,而不解决小尺度的细节。该提案旨在开发一种推导流体方程的新技术,该技术能够在不引入粘性耗散的情况下规范冲击形式的不连续性。这是通过定义可观测通量和可观测散度来实现的。然后将可观测散度定理应用于无粘流体流的质量、动量和能量守恒。导出一组方程,称为可观测欧拉方程,它们满足可观测尺度 alpha 上的守恒定律。可观察的尺度通常取决于我们观察流体特性的能力。这是数值模拟中的分辨率尺度或实验中设备的最小可分辨尺度。如果可观测尺度接近零,则经典欧拉方程将被恢复。这项工作旨在从理论上、计算和物理上理解可观测性及其在单相流体冲击问题中的应用。虽然所提出的想法是在流体冲击正则化的背景下进行测试的,但这一举措有可能应用于各种其他多尺度问题,例如弹性、磁流体动力学、多相流等。湍流空气和流体动力学预测将帮助大多数相关技术的制造商降低机器成本并提高其性能。考虑到此类问题在我们社会中发挥的作用,预计会产生重要的社会经济影响。本科生研究助理将通过 REU 的补充支持寻求,并且预计来自这些领域。这项工作的成果将丰富 PI 现有的学科课程,扩大学生的多学科接触。将开发一个网站向公众传播信息。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kamran Mohseni其他文献

Kamran Mohseni的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kamran Mohseni', 18)}}的其他基金

Roll stall and the vortex-induced aerodynamic of low-aspect-ratio fliers
低展弦比飞行器的滚转失速和涡流引起的空气动力学
  • 批准号:
    1805776
  • 财政年份:
    2018
  • 资助金额:
    $ 30.01万
  • 项目类别:
    Continuing Grant
NRI: Operating in the Abyss: Bringing Together Humans and Bio-Inpsired Autonomous Vehicles for Maritime Applications
NRI:在深渊中运作:将人类和仿生自动驾驶车辆结合起来用于海事应用
  • 批准号:
    1638034
  • 财政年份:
    2016
  • 资助金额:
    $ 30.01万
  • 项目类别:
    Standard Grant
Microscale Heat Transfer in Digital Microfluidics
数字微流体中的微尺度传热
  • 批准号:
    1403828
  • 财政年份:
    2014
  • 资助金额:
    $ 30.01万
  • 项目类别:
    Standard Grant
Digitized Heat Transfer: A New Paradigm for Thermal Management of Compact Micro Systems
数字化传热:紧凑型微型系统热管理的新范式
  • 批准号:
    1145009
  • 财政年份:
    2011
  • 资助金额:
    $ 30.01万
  • 项目类别:
    Standard Grant
Kinematics and Hydrodynamics of Aquatic Jet Bio-Propulsion
水上喷射生物推进的运动学和流体动力学
  • 批准号:
    0854542
  • 财政年份:
    2009
  • 资助金额:
    $ 30.01万
  • 项目类别:
    Standard Grant
Digitized Heat Transfer: A New Paradigm for Thermal Management of Compact Micro Systems
数字化传热:紧凑型微型系统热管理的新范式
  • 批准号:
    0756505
  • 财政年份:
    2008
  • 资助金额:
    $ 30.01万
  • 项目类别:
    Standard Grant
SGER: Electrowetting Actuation of Droplets for Cooling of Integrated Circuits
SGER:用于冷却集成电路的液滴电润湿驱动
  • 批准号:
    0540004
  • 财政年份:
    2006
  • 资助金额:
    $ 30.01万
  • 项目类别:
    Standard Grant
Collaborative Research: Pulsatile Jet Propulsion for Underwater Robots
合作研究:水下机器人脉动喷射推进
  • 批准号:
    0413300
  • 财政年份:
    2005
  • 资助金额:
    $ 30.01万
  • 项目类别:
    Continuing Grant
ITR - (NHS+ASE+ECS) - (dmc+sim+int): Loosely Cooperating Micro Air Vehicle Networks for Toxic Plume Characterization
ITR - (NHS ASE ECS) - (dmc sim int):用于有毒羽流表征的松散合作微型飞行器网络
  • 批准号:
    0427947
  • 财政年份:
    2004
  • 资助金额:
    $ 30.01万
  • 项目类别:
    Standard Grant

相似国自然基金

部分耗散模型的稳定性变更与分歧研究
  • 批准号:
    12301131
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
稳态水波问题的分歧结构和稳定性
  • 批准号:
    12301133
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于绿色评级分歧的企业漂绿画像、动机与治理研究
  • 批准号:
    72302013
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
变分分歧及其应用
  • 批准号:
    12371108
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
批量分歧下混装作业车间生产物流同步调度理论及方法
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目

相似海外基金

Divergence and parallel evolution of boldness in guppies
孔雀鱼胆量的分歧与平行进化
  • 批准号:
    NE/Y000234/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.01万
  • 项目类别:
    Research Grant
The genetic basis of divergence in immune defense between species
物种间免疫防御差异的遗传基础
  • 批准号:
    2330095
  • 财政年份:
    2024
  • 资助金额:
    $ 30.01万
  • 项目类别:
    Standard Grant
How does embryonic physiology shape the divergence of brain development?
胚胎生理学如何影响大脑发育的差异?
  • 批准号:
    DP240102458
  • 财政年份:
    2024
  • 资助金额:
    $ 30.01万
  • 项目类别:
    Discovery Projects
Pride or Prejudice? The Divergence of Right-Wing Populism between The Hetero and The Homo
傲慢还是偏见?
  • 批准号:
    2886830
  • 财政年份:
    2023
  • 资助金额:
    $ 30.01万
  • 项目类别:
    Studentship
NSF PRFB FY 2023: Investigating enhancer and protein divergence at follistatin paralogs underlying genetic assimilation of wing plasticity
NSF PRFB 2023 财年:研究卵泡抑素旁系同源物的增强子和蛋白质差异,这些是翅膀可塑性遗传同化的基础
  • 批准号:
    2305817
  • 财政年份:
    2023
  • 资助金额:
    $ 30.01万
  • 项目类别:
    Fellowship Award
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了