Microscale Heat Transfer in Digital Microfluidics
数字微流体中的微尺度传热
基本信息
- 批准号:1403828
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-01 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
CBET-1403828MohseniHeat is an unavoidable byproduct of the normal operation of an electronic device, generated as a result of electrical energy being converted to thermal energy during circuit activities. An increase in speed of an electronic system is often achieved by reduction in circuit delay due to higher circuit packaging densities. Unfortunately, this is accompanied by increased power dissipation per circuit. As the need for fast electronic devices increases, the ability to remove heat flux effectively and efficiently is in greater demand. To this end, the ability to safely dissipate large amounts of heat from very small areas is key to many of today's cutting edge technologies. Reducing heat fluxes by an order of 100-1000 W/cm2 and beyond is currently encountered in high performance supercomputers, power electronic devices, electric vehicles, advanced military avionics, radars, and lasers. The proposed investigation will explore the active and on-demand micro actuation and transport of liquid droplets, a process termed Digitized Heat Transfer (DHT), for effective thermal management of high-power compact systems. The DHT technique has two main advantages. First, the use of individual droplets and the subsequent introduction of recirculation zones inside the droplets allows for an increased heat removal rate as compared to continuous liquid-cooling flows as well as air-cooling systems. Second, the droplets may be discretely manipulated, enabling it individual, instruction-based programming of fluid processing, where droplets are transported, mixed, reacted, stored, and analyzed in packets without the need for moving mechanical parts. This capability of DHT is aptly-suited for transient thermal management and the suppression of temperature overshoots during the dissipation of power spikes.In addition to the technical advances in thermal sciences, fluid dynamics, and computational techniques anticipated above, undergraduate and graduate students will be trained in these topics. Undergraduate research assistants will be sought via supplementary REU support, and can be expected to come from the previously mentioned fields. The PI intends to develop a course in micro-scale transport at the University of Florida and expand his current course on micro and nano thermofluidics with the addition of both a fabrication and a computational component. The PI's existing multidisciplinary courses will be enriched with results from this work, expanding student exposure to different aspects of micro fluidics.
CBET-1403828MohseniHeat 是电子设备正常运行时不可避免的副产品,是由于电路活动期间电能转换为热能而产生的。电子系统速度的提高通常是通过由于更高的电路封装密度而减少电路延迟来实现的。不幸的是,这伴随着每个电路的功耗增加。随着对快速电子设备的需求增加,对有效且高效地去除热通量的能力的需求也越来越大。为此,从非常小的区域安全地散发大量热量的能力是当今许多尖端技术的关键。目前,高性能超级计算机、电力电子设备、电动汽车、先进军用航空电子设备、雷达和激光器都需要将热通量降低 100-1000 W/cm2 数量级甚至更多。拟议的研究将探索主动且按需的微驱动和液滴传输,这一过程称为数字化传热(DHT),用于高功率紧凑系统的有效热管理。 DHT技术有两个主要优点。首先,与连续液体冷却流以及空气冷却系统相比,使用单个液滴以及随后在液滴内部引入再循环区域可以提高散热率。其次,可以离散地操纵液滴,从而能够对流体处理进行单独的、基于指令的编程,其中液滴以包的形式传输、混合、反应、存储和分析,而不需要移动机械部件。 DHT 的这种功能非常适合瞬态热管理和功率尖峰耗散过程中温度过冲的抑制。除了上述预期的热科学、流体动力学和计算技术方面的技术进步外,本科生和研究生还将接受过这些主题的培训。本科生研究助理将通过 REU 的补充支持寻求,并且预计来自前面提到的领域。该 PI 打算在佛罗里达大学开发一门微尺度传输课程,并通过添加制造和计算组件来扩展他当前的微纳米热流体课程。这项工作的成果将丰富 PI 现有的多学科课程,扩大学生对微流体学不同方面的接触。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kamran Mohseni其他文献
Kamran Mohseni的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kamran Mohseni', 18)}}的其他基金
Roll stall and the vortex-induced aerodynamic of low-aspect-ratio fliers
低展弦比飞行器的滚转失速和涡流引起的空气动力学
- 批准号:
1805776 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
NRI: Operating in the Abyss: Bringing Together Humans and Bio-Inpsired Autonomous Vehicles for Maritime Applications
NRI:在深渊中运作:将人类和仿生自动驾驶车辆结合起来用于海事应用
- 批准号:
1638034 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Digitized Heat Transfer: A New Paradigm for Thermal Management of Compact Micro Systems
数字化传热:紧凑型微型系统热管理的新范式
- 批准号:
1145009 - 财政年份:2011
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Observable Divergence Theorem: A new technique for deriving averaged equations for multi-scale shock problems
可观测散度定理:一种推导多尺度冲击问题平均方程的新技术
- 批准号:
1134229 - 财政年份:2011
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Kinematics and Hydrodynamics of Aquatic Jet Bio-Propulsion
水上喷射生物推进的运动学和流体动力学
- 批准号:
0854542 - 财政年份:2009
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Digitized Heat Transfer: A New Paradigm for Thermal Management of Compact Micro Systems
数字化传热:紧凑型微型系统热管理的新范式
- 批准号:
0756505 - 财政年份:2008
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
SGER: Electrowetting Actuation of Droplets for Cooling of Integrated Circuits
SGER:用于冷却集成电路的液滴电润湿驱动
- 批准号:
0540004 - 财政年份:2006
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Pulsatile Jet Propulsion for Underwater Robots
合作研究:水下机器人脉动喷射推进
- 批准号:
0413300 - 财政年份:2005
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
ITR - (NHS+ASE+ECS) - (dmc+sim+int): Loosely Cooperating Micro Air Vehicle Networks for Toxic Plume Characterization
ITR - (NHS ASE ECS) - (dmc sim int):用于有毒羽流表征的松散合作微型飞行器网络
- 批准号:
0427947 - 财政年份:2004
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似国自然基金
甲基转移酶样蛋白METTL25调控初生羔羊棕色脂肪产热的分子机制研究
- 批准号:32372834
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
嗜热四膜虫甲基转移酶复合体MTA1c介导DNA 6mA甲基化的机理研究
- 批准号:32301007
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
热/振耦合下MicroLED巨量转移装备自稳定柔性连接机制研究
- 批准号:52305597
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
深部极端热环境下纳米发电机中电荷转移特性与基础过程研究
- 批准号:52372251
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
空间电荷转移特征的金属配合物热激活延迟荧光
- 批准号:
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:面上项目
相似海外基金
Micro-FloTec: Microscale enabled advanced flow and heat transfer technologies featuring high performance and low power consumption
Micro-FloTec:Microscale 支持先进的流动和传热技术,具有高性能和低功耗的特点
- 批准号:
EP/X038319/1 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Research Grant
Microscale enabled advanced flow and heat transfer technologies featuring high performance and low power consumption; Acronym: Micro-FloTec
微尺度实现了高性能、低功耗的先进流动和传热技术;
- 批准号:
EP/Y004973/1 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Research Grant
Fine scale mapping of daily temperatures in croplands by developing accumulated heat transfer model
通过开发累积传热模型对农田每日温度进行精细绘制
- 批准号:
20K22605 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Microscale observation of heat transfer mechanisms in water flow boiling in a minichannel
微通道内水流沸腾传热机制的微观观察
- 批准号:
18K13706 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Investigation of the influence of microbubble and Marangoni flow on heat transfer efficiency in the microscale cooling devices
微气泡和马兰戈尼流对微型冷却装置传热效率的影响研究
- 批准号:
17H04904 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Young Scientists (A)