I-Corps: Advanced simulation system for end-to-end autonomy validation in robot vehicle systems
I-Corps:用于机器人车辆系统端到端自主验证的高级仿真系统
基本信息
- 批准号:2331047
- 负责人:
- 金额:$ 5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-15 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The broader impact/commercial potential of this I-Corps project is in simulation technology that can be used for validation and optimization of any autonomous robot vehicle system. This technology’s most significant benefit is for robots (Uncrewed Air, Ground, Marine Vehicles) in sectors involving challenging operation environments including defense, space, transportation, delivery, construction, energy, mining, and agriculture. Unlocking rapid and reliable deployment at scale is key for the manufacturers and service providers active in these sectors and the limitations of their current method for test and validation can become a significant obstacle for deployment at scale. Current processes for validation include field tests, lab experiments or using disintegrated software tools to test different parts of the system in isolation. Lack of large-scale end-to-end test data that would enable them to rapidly validate the autonomy stack of these robots can result in an autonomy that cannot be relied upon eventually leading to increased operation inefficiencies, manual labor, risks and costs in development and resources.This I-Corps project is based on the development of an advanced modular simulation system to validate, enhance, and optimize the autonomy stack in autonomous robots end-to-end. It provides scalable testbeds for robot autonomy through a connected modular data-driven simulation where the robots’ software, hardware, and artificial intelligence can be tested through all phases of operation in multi-fidelity virtual spaces and challenged in different realistic scenarios. Using a novel approach in multi-modal data collection, through a performant rendering mechanism and a hybrid modular design for underlying engines, the simulator generates large-scale test data to validate and optimize the components in autonomy stack for single or multi-robot scenarios before deployment thus mitigating risk of deployment and accelerating validation. The underlying modular engines provide physically accurate sensor and object modeling, data-driven large-scale performant environment modeling, software and hardware in-the-loop testing, human feedback integration and predictive vision modeling for integrated test and training of machine learning models and other software and hardware components in the autonomy stack. By accelerating validation by a factor of 100 to 100,000, this technology can enable built-in resiliency through reliable autonomy stacks that are optimized and resilient against interference or sources of errors.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该 I-Corps 项目更广泛的影响/商业潜力在于模拟技术,可用于验证和优化任何自主机器人车辆系统。该技术最显着的好处是针对各个领域的机器人(无人驾驶空中、地面、海洋车辆)。国防、太空、运输、交付、建筑、能源、采矿和农业等具有挑战性的运营环境涉及锁定快速可靠的大规模部署,这对于活跃在这些领域的制造商和服务提供商来说至关重要,而他们当前的方法也存在局限性。测试和验证可以成为目前大规模部署的重大障碍包括现场测试、实验室实验或使用分散的软件工具来单独测试系统的不同部分,缺乏大规模的端到端测试数据来帮助他们快速进行测试。验证这些机器人的自主堆栈可能会导致无法依赖的自主性,最终导致操作效率低下、体力劳动、开发和资源方面的风险和成本增加。该 I-Corps 项目基于高级模块化模拟的开发系统来验证、增强和优化它通过连接的模块化数据驱动模拟为机器人自主提供可扩展的测试平台,其中机器人的软件、硬件和人工智能可以在多保真虚拟操作的所有阶段进行测试。模拟器使用多模态数据收集的新颖方法,通过高性能渲染机制和底层引擎的混合模块化设计,生成大规模测试数据来验证和优化自治堆栈中的组件。适用于单机器人或多机器人底层模块化引擎提供物理上精确的传感器和对象建模、数据驱动的大规模高性能环境建模、软件和硬件在环测试、人类反馈集成和预测视觉。通过将验证加速 100 到 100,000 倍,该技术可以通过可靠的自治堆栈实现内置弹性。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Susan Fussell其他文献
Susan Fussell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Susan Fussell', 18)}}的其他基金
II-New: Laboratory for Studying Next Generation Computer-Mediated Teamwork
II-新:研究下一代计算机介导的团队合作实验室
- 批准号:
1730096 - 财政年份:2017
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
CHS: Medium: Improving Distributed Teamwork Through Mobile Robotic Telepresence Systems
CHS:中:通过移动机器人远程呈现系统改善分布式团队合作
- 批准号:
1563705 - 财政年份:2016
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
WORKSHOP: Human-Computer Interaction Doctoral Research Consortium at ACM CHI 2015
研讨会:ACM CHI 2015 人机交互博士研究联盟
- 批准号:
1533789 - 财政年份:2015
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
HCC: Small: Understanding and Supporting Communication Across Language Boundaries
HCC:小:理解和支持跨语言界限的沟通
- 批准号:
1318899 - 财政年份:2013
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
VOSS: Supporting Multilingual Virtual Organizations
VOSS:支持多语言虚拟组织
- 批准号:
1025425 - 财政年份:2010
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
VOSS: Collaborative Research: Sharing Insights Across Multiple Virtual Organizations
VOSS:协作研究:跨多个虚拟组织共享见解
- 批准号:
1025184 - 财政年份:2010
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
VOSS: Supporting Interpersonal Awareness in Multicultural Virtual Organizations
VOSS:支持多元文化虚拟组织中的人际意识
- 批准号:
0942658 - 财政年份:2009
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
HCC-Medium: Collaborative Research: Dynamic Support for Computer-Mediated Intercultural Communication
HCC-Medium:协作研究:计算机介导的跨文化交流的动态支持
- 批准号:
0803482 - 财政年份:2008
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
Gestural Communication in Collaborative Physical Tasks
协作身体任务中的手势交流
- 批准号:
0208903 - 财政年份:2002
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
相似国自然基金
托卡马克先进运行模式下阿尔芬波不稳定性和高能量粒子输运的混合模拟研究
- 批准号:12205251
- 批准年份:2022
- 资助金额:20 万元
- 项目类别:
先进偏滤器托卡马克中边界杂质输运的实验和三维模拟研究
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
基于理论模拟,先进表征与分子设计的800圈450Wh/kg液态金属锂电池
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
先进工艺下的生物电信号感知模拟前端全集成抗干扰关键技术研究
- 批准号:62104145
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
托卡马克芯部弱剪切先进运行模式中诡模的磁流体模拟研究
- 批准号:
- 批准年份:2020
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Travel: NSF Student Travel Grant for 2024 ACM SIGSIM Principles of Advanced Discrete Simulation (PADS)
旅行:2024 年 ACM SIGSIM 高级离散仿真原理 (PADS) 的 NSF 学生旅行补助金
- 批准号:
2416160 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Pathophysiology and prevention of degeneration of heterograft biomaterials due to advanced glycation end products and serum protein infiltration
由于晚期糖基化终产物和血清蛋白浸润导致异种移植生物材料变性的病理生理学和预防
- 批准号:
10679910 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
ACTS (AD Clinical Trial Simulation): Developing Advanced Informatics Approaches for an Alzheimer's Disease Clinical Trial Simulation System
ACTS(AD 临床试验模拟):为阿尔茨海默病临床试验模拟系统开发先进的信息学方法
- 批准号:
10753675 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Mechanisms of NMDAR contribution to traumatic injury in retinal ganglion cells
NMDAR对视网膜神经节细胞创伤性损伤的作用机制
- 批准号:
10570666 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Machine Learning with Scintillation Photon Counting Detectors to Advance PET Imaging Performance
利用闪烁光子计数探测器进行机器学习以提高 PET 成像性能
- 批准号:
10742435 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别: