Machine Learning with Scintillation Photon Counting Detectors to Advance PET Imaging Performance

利用闪烁光子计数探测器进行机器学习以提高 PET 成像性能

基本信息

项目摘要

Project Summary Clinical time-of-flight positron emission tomography (TOF-PET) systems capable of excellent coincidence time resolution (CTR) promise to drastically enhance effective 511 keV photon sensitivity. The ability to more precisely localize annihilation origins along system response lines constrains event data, providing improved signal-to- noise ratio (SNR) and reconstructed image quality by associating 511 keV photons more closely to their true origin. This SNR enhancement increases as CTR is improved, and a major goal of ongoing PET instrumentation research and development is to push system CTR ≤100 ps full-width-at-half-maximum (FWHM). At this level of performance, events are constrained ≤1.5 cm, providing a ≥five-fold increase in SNR relative to a system with no TOF capability. Advanced systems capable of ≤100 ps FWHM CTR would effectively more than double or quadruple the effective 511 keV system sensitivity, in comparison to state-of-the-art, clinical TOF-PET systems (250-400 ps FWHM CTR). Thus, advancing CTR is also a pathway for greatly improved system sensitivity without increasing detection volume and system material cost. Standard PET detectors comprising segmented arrays of high-aspect-ratio scintillation crystal elements and aggressive electronic signal multiplexing cannot achieve this level of performance and are ultimately limited by poor light collection efficiency, depth-dependent scintillation photon transit time jitter seen by the photodetector, and poor electronic SNR for optimal discriminator time pickoff and 511 keV photon time of interaction estimation. To address this, we are developing a new detector readout concept for monolithic scintillation detectors which allows scintillation photons arriving at each photosensor pixel to be counted and directly digitized. The spatiotemporal arrival time of scintillation photons in monolithic detectors intrinsically carries all information on 511 keV photon energy, three-dimensional (3D) position and time of interaction, and 3D position of interaction dependent scintillation photon transit skew. [Thus, this new detector readout concept’s ability to directly digitize the temporal scintillation light maps on photosensor arrays coupled to monolithic scintillators offers a unique opportunity for machine learning (ML) techniques to extract 3D positioning and time of interaction estimators in large area, thick (high 511 keV photon detection efficiency) detector modules that are at the statistical limit of performance. We will leverage this new advancement to investigate the performance of ML applied to the digitized photon data streams from a prototype detector module to demonstrate high resolution, three-dimensional positioning capabilities and CTR in a design that also makes no sacrifices on detection efficiency. The proposed PET detector technology can have a significant impact on quantitative PET imaging. The image SNR enabled by the significant boost in effective sensitivity can be employed to substantially reduce tracer dose and shorten scan time/increase patient throughput, or to better visualize and quantify smaller lesions/features in the presence of significant background, which are important features that can make PET more practical and accurate, as well as help to expand its roles in patient management.]
项目摘要 临床飞行时间正电子发射断层扫描(TOF-PET)系统,具有出色的巧合时间 分辨率(CTR)有望大大增强有效的511 KEV光子灵敏度。更精确的能力 沿系统响应线局部化歼灭起源会限制事件数据,从而改善了信号到信号。 噪声比(SNR)和重建图像质量通过将511 kev照片与它们的真实相关联。 起源。随着CTR的改善,SNR增强的增强和正在进行的宠物仪器的主要目标是 研发是为了推动系统CTR≤100PS全宽度最大宽度(FWHM)。在这个级别 性能,事件的约束≤1.5厘米,相对于系统,SNR的增加了≥five倍倍 没有TOF功能。能够≤100ps fwhm ctr的高级系统有效地超过两倍或 与最先进的临床TOF-PET系统相比 (250-400 PS FWHM CTR)。那就前进的CTR也是大大提高系统灵敏度的途径 增加检测量和系统材料成本。标准宠物探测器完成分段阵列的 高光谱比率闪烁晶体元素和侵略性电子信号多路复用无法实现 性能水平,最终受光收集效率,深度依赖性闪烁的限制 光电探测器看到光子传输时间抖动,而电子snr差,可用于最佳鉴别器时间选择 和511相互作用估计的KEV光子时间。为了解决这个问题,我们正在开发新的检测器读数 整体闪烁探测器的概念,该检测器允许闪烁的照片到达每个光电传感器像素 要计算并直接数字化。整体探测器中闪烁照片的空间临时到达时间 本质上包含有关511 KEV光子能量,三维(3D)位置和时间的所有信息 相互作用和相互作用依赖性闪烁光子传输偏斜的3D位置。 [因此,这个新检测器 读数概念的能力直接数字化光电传感器阵列上的临时闪光灯图 对于单片闪烁体,为机器学习(ML)提取3D提供了独特的机会(ML) 大面积(高511 KEV光子检测效率)的位置和相互作用估计器的时间 具有性能统计限制的检测器模块。我们将利用这一新的进步 研究从原型检测器模块应用于数字化光子数据流的ML的性能 为了展示高分辨率,三维定位功能和CTR的设计 没有关于检测效率的牺牲。拟议的宠物探测器技术可以对 定量宠物成像。通过有效敏感性的显着提升可以启用图像SNR 用于大大减少示踪剂剂量并缩短扫描时间/增加患者吞吐量,或者更好 在存在重要背景的情况下可视化和量化较小的病变/特征,这很重要 可以使宠物更实用和准确的功能,并有助于扩大其在患者中的角色 管理。]

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

Joshua William Cat...的其他基金

Scintillation Photon Counting Detectors for 100 ps Time-of-Flight PET Imaging
用于 100 ps 飞行时间 PET 成像的闪烁光子计数探测器
  • 批准号:
    10504849
    10504849
  • 财政年份:
    2022
  • 资助金额:
    $ 50.28万
    $ 50.28万
  • 项目类别:
Scintillation Photon Counting Detectors for 100 ps Time-of-Flight PET Imaging
用于 100 ps 飞行时间 PET 成像的闪烁光子计数探测器
  • 批准号:
    10704157
    10704157
  • 财政年份:
    2022
  • 资助金额:
    $ 50.28万
    $ 50.28万
  • 项目类别:
Clinical Imaging Performance Evaluation of a Multi-Knife-Edge Slit Collimator-based Prompt Gamma Ray Imaging System
基于多刀口狭缝准直器的瞬发伽马射线成像系统的临床成像性能评估
  • 批准号:
    10511964
    10511964
  • 财政年份:
    2022
  • 资助金额:
    $ 50.28万
    $ 50.28万
  • 项目类别:
Low cost and high performance time-of-flight PET detectors
低成本、高性能飞行时间 PET 探测器
  • 批准号:
    9974310
    9974310
  • 财政年份:
    2020
  • 资助金额:
    $ 50.28万
    $ 50.28万
  • 项目类别:
Low cost and high performance time-of-flight PET detectors
低成本、高性能飞行时间 PET 探测器
  • 批准号:
    10569636
    10569636
  • 财政年份:
    2020
  • 资助金额:
    $ 50.28万
    $ 50.28万
  • 项目类别:
Low cost and high performance time-of-flight PET detectors
低成本、高性能飞行时间 PET 探测器
  • 批准号:
    10380854
    10380854
  • 财政年份:
    2020
  • 资助金额:
    $ 50.28万
    $ 50.28万
  • 项目类别:

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
  • 批准号:
    10462257
    10462257
  • 财政年份:
    2023
  • 资助金额:
    $ 50.28万
    $ 50.28万
  • 项目类别:
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
  • 批准号:
    10727940
    10727940
  • 财政年份:
    2023
  • 资助金额:
    $ 50.28万
    $ 50.28万
  • 项目类别:
Computer-Aided Triage of Body CT Scans with Deep Learning
利用深度学习对身体 CT 扫描进行计算机辅助分类
  • 批准号:
    10585553
    10585553
  • 财政年份:
    2023
  • 资助金额:
    $ 50.28万
    $ 50.28万
  • 项目类别:
High-resolution cerebral microvascular imaging for characterizing vascular dysfunction in Alzheimer's disease mouse model
高分辨率脑微血管成像用于表征阿尔茨海默病小鼠模型的血管功能障碍
  • 批准号:
    10848559
    10848559
  • 财政年份:
    2023
  • 资助金额:
    $ 50.28万
    $ 50.28万
  • 项目类别:
Bioethical, Legal, and Anthropological Study of Technologies (BLAST)
技术的生物伦理、法律和人类学研究 (BLAST)
  • 批准号:
    10831226
    10831226
  • 财政年份:
    2023
  • 资助金额:
    $ 50.28万
    $ 50.28万
  • 项目类别: