Collaborative Research: Hardware-Aware Matrix Computations for Deep Learning Applications

协作研究:深度学习应用的硬件感知矩阵计算

基本信息

  • 批准号:
    2247014
  • 负责人:
  • 金额:
    $ 37.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-05-01 至 2026-04-30
  • 项目状态:
    未结题

项目摘要

Deep Learning (DL) systems these days are ubiquitous, and arguably affect our everyday lives more than any other computational system. Recently, such deep models (e.g., GPT-3) have increasingly become large and unwieldy with a large computational footprint. Given the ever increasing computational requirements, it has become nearly impossible to make progress on cutting edge research in learning such DL models outside of a few large technological companies. This project will explore principled ways to create DL systems that are as expressive as the large deep models but at a fraction of the computational cost. On the practical front these improvements are expected to expand the possibility of creating such powerful DL models to larger parts of society. On the educational front, this project will train undergraduate (UG) researchers and will integrate responsible computing into UG curriculum.This project will study how one can use structured matrices in concert with modern hardware constraints to achieve similar performance as these really large models but at a fraction of size and computational cost. Specifically, the investigators focus on the following two thrusts: (i) Design the ‘holy grail’ of structured matrices that satisfy all properties that are desirable in DL applications (including having an efficient projection problem as well as having efficient parallel and/or hardware friendly learning algorithms); and (ii) Thinking of new applications that our new theory can unlock. This DL lens exposes new problems to consider when studying structured matrices. In turn, the new family of structured matrices studied in this project will not only have immediate practical applications but will also unlock new twists on classical theoretical problems in matrix computations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
如今,深度学习 (DL) 系统无处不在,并且比任何其他计算系统对我们日常生活的影响更大,最近,由于计算量大,此类深度模型(例如 GPT-3)变得越来越庞大且笨重。随着计算需求的不断增加,除了少数大型科技公司之外,在学习此类深度学习模型方面的前沿研究几乎不可能取得进展,该项目将探索创建与大型深度模型一样具有表现力的深度学习系统的原则性方法。在一个在实际方面,这些改进有望将创建如此强大的深度学习模型的可能性扩大到社会的更大范围。在教育方面,该项目将培训本科生(UG)研究人员,并将负责任的计算融入其中。 UG 课程。该项目将研究如何使用结构化矩阵与现代硬件约束相结合,以较小的尺寸和计算成本实现与这些大型模型类似的性能。具体而言,研究人员重点关注以下两个重点:( i) 设计结构化的“圣杯”满足深度学习应用所需的所有属性的矩阵(包括高效的投影问题以及高效的并行和/或硬件友好的学习算法);以及(ii)思考我们的新理论可以解锁的新应用。 Lens 揭示了研究结构化矩阵时需要考虑的新问题。反过来,该项目中研究的新的结构化矩阵系列不仅将具有直接的实际应用,而且还将为矩阵计算中的经典理论问题带来新的变化。该奖项反映了 NSF 的法定奖项。使命和通过使用基金会的智力价值和更广泛的影响审查标准进行评估,该项目被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Laughing Hyena Distillery: Extracting Compact Recurrences From Convolutions
Laughing Hyena Distillery:从卷积中提取紧凑递归
  • DOI:
    10.48550/arxiv.2310.18780
  • 发表时间:
    2023-10-28
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Stefano Massaroli;Michael Poli;Daniel Y. Fu;Hermann Kumbong;Rom N. Parnichkun;Aman Timalsina;David W. Romero;Quinn McIntyre;Beidi Chen;A. Rudra;Ce Zhang;Christopher Ré;Stefano Ermon;Y. Bengio
  • 通讯作者:
    Y. Bengio
Zoology: Measuring and Improving Recall in Efficient Language Models
动物学:测量和提高高效语言模型的召回率
Monarch Mixer: A Simple Sub-Quadratic GEMM-Based Architecture
Monarch Mixer:基于简单次二次 GEMM 的架构
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Atri Rudra其他文献

Structured Pruning for Large Language Models Using Coupled Components Elimination and Minor Fine-tuning
使用耦合组件消除和微小微调对大型语言模型进行结构化修剪
  • DOI:
  • 发表时间:
    1970-01-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sid Black;Stella Biderman;Eric Hallahan;Leo Anthony;Laurence Gao;Horace Golding;He;Wei;Zhuohan Li;Zi Lin;Ying Sheng;Christopher Clark;Kenton Lee;Ming;Peter Clark;Isaac Cowhey;O. Etzioni;Tushar Khot;Tri Dao;Dan Fu;Stefano Ermon;Atri Rudra;Edward J. Hu;Yelong Shen;Zeyuan Phillip Wallis;Eldar Kurtic;Daniel Campos;Tuan Nguyen;Elias Fran;Mark Kurtz;Ben Fineran;M. Goin;Hao Li;Asim Kadav;Igor Durdanovic;Hanan Samet;Chen Liang;Simiao Zuo;Minshuo Chen;Xia;Pengcheng Liu;Tuo He;Zhao Chen;Mitchell P. Marcus;Beatrice Santorini;Mary Ann;Stephen Merity;Caiming Xiong;James Bradbury;Todor Mihaylov
  • 通讯作者:
    Todor Mihaylov
L AUGHING H YENA D ISTILLERY Extracting Compact Recurrences From Convolutions
LAUGHING H YENA DISTILLERY 从卷积中提取紧凑递归
  • DOI:
  • 发表时间:
    1970-01-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    ∗. StefanoMassaroli;∗. MichaelPoli;∗. DanielY.Fu;Hermann Kumbong;Rom N. Parnichkun;Aman Timalsina;David W. Romero;Quinn McIntyre;Beidi Chen;Atri Rudra;Ce Zhang;Christopher Ré;Stefano Ermon;Y. Bengio
  • 通讯作者:
    Y. Bengio

Atri Rudra的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Atri Rudra', 18)}}的其他基金

AF: Medium: Collaborative Research: Beyond Sparsity: Refined Measures of Complexity for Linear Algebra
AF:媒介:协作研究:超越稀疏性:线性代数复杂性的精确度量
  • 批准号:
    1763481
  • 财政年份:
    2018
  • 资助金额:
    $ 37.7万
  • 项目类别:
    Continuing Grant
AF:Small:Tight Topology Dependent bounds on Distributed Communication
AF:小:分布式通信的紧密拓扑依赖界限
  • 批准号:
    1717134
  • 财政年份:
    2017
  • 资助金额:
    $ 37.7万
  • 项目类别:
    Standard Grant
AF:III:Small:Collaborative Research: New Frontiers in Join Algorithms: Optimality, Noise, and Richer Languages
AF:III:Small:协作研究:连接算法的新领域:最优性、噪声和更丰富的语言
  • 批准号:
    1319402
  • 财政年份:
    2013
  • 资助金额:
    $ 37.7万
  • 项目类别:
    Standard Grant
AF: Medium: Collaborative Research: Sparse Approximation: Theory and Extensions
AF:媒介:协作研究:稀疏逼近:理论与扩展
  • 批准号:
    1161196
  • 财政年份:
    2012
  • 资助金额:
    $ 37.7万
  • 项目类别:
    Standard Grant
CAREER: (TF/TOC) Efficient Computation of Approximate Solutions
职业:(TF/TOC)近似解的高效计算
  • 批准号:
    0844796
  • 财政年份:
    2009
  • 资助金额:
    $ 37.7万
  • 项目类别:
    Continuing Grant
Eastern Great Lakes Theory of Computation Workshop
东部五大湖计算理论研讨会
  • 批准号:
    0942511
  • 财政年份:
    2009
  • 资助金额:
    $ 37.7万
  • 项目类别:
    Standard Grant

相似国自然基金

基于任意精度计算架构的量子信息处理算法硬件加速技术研究
  • 批准号:
    62304037
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
资源受限下集成学习算法设计与硬件实现研究
  • 批准号:
    62372198
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于红外调控的自激活忆阻器阵列型强物理不可克隆函数硬件系统研究
  • 批准号:
    62305002
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向高速网络通信系统的纠错码设计和硬件实现研究
  • 批准号:
    62304103
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
无人船自主航行系统软硬件耦合失效机理及可靠性测试模型研究
  • 批准号:
    52301401
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
  • 批准号:
    2403135
  • 财政年份:
    2024
  • 资助金额:
    $ 37.7万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
  • 批准号:
    2403134
  • 财政年份:
    2024
  • 资助金额:
    $ 37.7万
  • 项目类别:
    Standard Grant
Collaborative Research: Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
合作研究:用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
  • 批准号:
    2343606
  • 财政年份:
    2024
  • 资助金额:
    $ 37.7万
  • 项目类别:
    Standard Grant
Collaborative Research: DESC: Type I: SEEDED: Sustainability-aware Reliable and Reusable AI Hardware Design
合作研究:DESC:类型 I:SEEDED:具有可持续性意识的可靠且可重复使用的人工智能硬件设计
  • 批准号:
    2323819
  • 财政年份:
    2023
  • 资助金额:
    $ 37.7万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: Accelerating Privacy-Preserving Machine Learning as a Service: From Algorithm to Hardware
协作研究:SaTC:核心:中:加速保护隐私的机器学习即服务:从算法到硬件
  • 批准号:
    2247892
  • 财政年份:
    2023
  • 资助金额:
    $ 37.7万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了