Collaborative Research: SaTC: CORE: Medium: Accelerating Privacy-Preserving Machine Learning as a Service: From Algorithm to Hardware

协作研究:SaTC:核心:中:加速保护隐私的机器学习即服务:从算法到硬件

基本信息

  • 批准号:
    2247892
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2027-06-30
  • 项目状态:
    未结题

项目摘要

Machine learning (ML) as a service is being overwhelmingly driven by the ever-increasing clients' intelligent data processing needs through the use of cloud servers, where powerful ML models are hosted. Although pervasive, out-sourced ML processing poses real threats to personal or business providers' data privacy. For example, the clients either need to share their sensitive data, such as healthcare records, financial information, with the server, or the server has to disclose the model to the clients. To guarantee privacy, the rise of cryptographic protocols, such as Homomorphic Encryption (HE), Multi-Party Computation (MPC), enable ML analytics directly on the encrypted data. While enticing, there still exists a big gap between the theory and practice, e.g., long latency due to the prohibitively expensive computation or communication overhead over ciphertext. This project aims to practically accelerate the private ML service by offering a full-fledged development of efficient, scalable and encryption-conscious computing paradigms. The project's novelties lie in new ML-specific cryptographic operators, accuracy-preserving and crypto-friendly neural architectures, and pioneered algorithm-hardware co-design methodologies. The project's broader significance and importance are: (1) to advance trustworthy artificial intelligence (AI), one of the national strategic pillars of the National AI Initiative; (2) to deepen the understanding of interactions among cryptography, machine learning and hardware acceleration; (3) to enrich the computer engineering curriculum, and the training of students from diverse backgrounds through relevant programs at Lehigh University, Northeastern University, and the University of Connecticut.The project will develop a multifaceted design paradigm for efficient, scalable and practical algorithm-hardware co-optimized solutions to significantly accelerate privacy-preserving machine learning on hardware platforms such as FPGA. This project consists of three intervening research thrusts: (1) to orchestrate information representation and model sparsity in the encryption domain to fundamentally decrease the memory and computation footprint in the HE inference; (2) to overcome the ultra-high overhead associated with the MPC-based solution through techniques such as encryption-aware model truncation and partial hardware reconfiguration; (3) to search for crypto-friendly and accuracy-preserving neural architectures via jointly optimizing non-linear operation reduction, and closed loop "algorithm-hardware" design space exploration.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
客户通过使用云服务器(托管强大的 ML 模型)不断增长的智能数据处理需求,极大地推动了机器学习 (ML) 作为一项服务。尽管普遍存在,外包机器学习处理对个人或企业提供商的数据隐私构成了真正的威胁。例如,客户端要么需要与服务器共享他们的敏感数据,例如医疗记录、财务信息,要么服务器必须向客户端公开模型。为了保证隐私,同态加密 (HE)、多方计算 (MPC) 等加密协议的兴起使得机器学习能够直接对加密数据进行分析。虽然很诱人,但理论与实践之间仍然存在很大差距,例如,由于密文上昂贵的计算或通信开销而导致较长的延迟。该项目旨在通过提供高效、可扩展和加密意识计算范例的全面开发来切实加速私有机器学习服务。该项目的新颖之处在于新的 ML 特定加密运算符、保留准确性和加密友好的神经架构,以及开创性的算法-硬件协同设计方法。该项目的更广泛意义和重要性是:(1)推进可信人工智能(AI),这是国家人工智能计划的国家战略支柱之一; (2)加深对密码学、机器学习和硬件加速之间相互作用的理解; (3)丰富计算机工程课程,通过里哈伊大学、东北大学和康涅狄格大学的相关项目培养来自不同背景的学生。该项目将为高效、可扩展和实用的算法开发多方面的设计范式——硬件协同优化的解决方案可显着加速 FPGA 等硬件平台上的隐私保护机器学习。该项目由三个干预研究重点组成:(1)协调加密域中的信息表示和模型稀疏性,从根本上减少 HE 推理中的内存和计算占用; (2) 通过加密感知模型截断和部分硬件重新配置等技术,克服基于 MPC 的解决方案带来的超高开销; (3)通过联合优化非线性运算缩减和闭环“算法-硬件”设计空间探索,寻找加密友好且保持准确性的神经架构。该奖项反映了 NSF 的法定使命,并被认为值得支持使用基金会的智力价值和更广泛的影响审查标准进行评估。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
NNSplitter: An Active Defense Solution for DNN Model via Automated Weight Obfuscation
NNSplitter:通过自动权重混淆的 DNN 模型主动防御解决方案
MirrorNet: A TEE-Friendly Framework for Secure On-Device DNN Inference
MirrorNet:用于安全设备上 DNN 推理的 TEE 友好框架
  • DOI:
    10.1109/iccad57390.2023.10323746
  • 发表时间:
    2023-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Liu, Ziyu;Luo., Yukui;Duan, Shijin;Zhou, Tong;Xu, Xiaolin
  • 通讯作者:
    Xu, Xiaolin
HammerDodger: A Lightweight Defense Framework against RowHammer Attack on DNNs
HammerDodger:针对 DNN 的 RowHammer 攻击的轻量级防御框架
SpENCNN: Orchestrating Encoding and Sparsity for Fast Homomorphically Encrypted Neural Network Inference
SpENCNN:协调编码和稀疏性以实现快速同态加密神经网络推理
  • DOI:
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ran Ran;Xinwei Luo;Wei Wang;Tao Liu;Gang Quan;Xiaolin Xu;Caiwen Ding;Wujie Wen
  • 通讯作者:
    Wujie Wen
AutoReP: Automatic ReLU Replacement for Fast Private Network Inference
AutoReP:自动 ReLU 替换,实现快速专用网络推理
  • DOI:
    10.1109/iccv51070.2023.00478
  • 发表时间:
    2023-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Peng, Hongwu;Huang, Shaoyi;Zhou, Tong;Luo, Yukui;Wang, Chenghong;Wang, Zigeng;Zhao, Jiahui;Xie, Xi;Li, Ang;Geng, Tony;et al
  • 通讯作者:
    et al
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiaolin Xu其他文献

Diagnostic value of ultrasound elastography for differentiation of benign and malignant axillary lymph nodes: a meta-analysis.
超声弹性成像鉴别腋窝淋巴结良恶性的诊断价值:荟萃分析。
  • DOI:
    10.1016/j.crad.2020.03.021
  • 发表时间:
    2020-04-11
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Guoxue Tang;Xiaoyun Xiao;Xiaolin Xu;Hai;Y;Xiaodi Liu;Jing Tian;B. Luo
  • 通讯作者:
    B. Luo
Dexmedetomidine inhibits oxidative stress in sepsis-induced acute kidney injury in rats by regulating GSK-3β/Nrf2/ARE axis
右美托咪定通过调节 GSK-3β/Nrf2/ARE 轴抑制脓毒症诱导的大鼠急性肾损伤的氧化应激
  • DOI:
    10.4314/tjpr.v20i7.9
  • 发表时间:
    2022-02-14
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    Y. Jing;Li Yao;Weicui Du;Jia Liu;Rongrong Yang;Wanchang Zhou;Xiaolin Xu;Ji Cao;Lichao Zhang;Chengjing Si
  • 通讯作者:
    Chengjing Si
Innovative allocation mechanism design of carbon emission permits in China under the background of a low-carbon economy
低碳经济背景下我国碳排放权分配机制创新设计
Effect of menthol on ocular drug delivery
薄荷醇对眼部药物递送的影响
Supplement to ``Demand Pooling in Omnichannel Operations''
《全渠道运营中的需求汇集》的补充
  • DOI:
  • 发表时间:
    2020-12-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yi Yang;Ming Hu;Weili Xue;Xiaolin Xu
  • 通讯作者:
    Xiaolin Xu

Xiaolin Xu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiaolin Xu', 18)}}的其他基金

Collaborative Research: SaTC: CORE: Small: Securing Brain-inspired Hyperdimensional Computing against Design-time and Run-time Attacks for Edge Devices
协作研究:SaTC:核心:小型:保护类脑超维计算免受边缘设备的设计时和运行时攻击
  • 批准号:
    2326597
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Securing Reconfigurable Hardware Accelerator for Machine Learning: Threats and Defenses
职业:保护用于机器学习的可重新配置硬件加速器:威胁与防御
  • 批准号:
    2239672
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CICI:TCR:CAREFREE:Cloud infrAstructure ResiliencE of the Future foR tEstbeds, accelerators and nEtworks
CICI:TCR:CAREFREE:未来测试床、加速器和网络的云基础设施弹性
  • 批准号:
    2319962
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Securing Brain-inspired Hyperdimensional Computing against Design-time and Run-time Attacks for Edge Devices
协作研究:SaTC:核心:小型:保护类脑超维计算免受边缘设备的设计时和运行时攻击
  • 批准号:
    2326597
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Travel: NSF Student Travel Grant for 2023 New England Hardware Security Day (NEHWS2023)
旅行:2023 年新英格兰硬件安全日 NSF 学生旅行补助金 (NEHWS2023)
  • 批准号:
    2315830
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Secure and Robust Machine Learning in Multi-Tenant Cloud FPGA
协作研究:SaTC:CORE:小型:多租户云 FPGA 中安全且稳健的机器学习
  • 批准号:
    2153690
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
SaTC: EDU: Collaborative: Bolstering UAV Cybersecurity Education through Curriculum Development with Hands-on Laboratory Framework
SaTC:EDU:协作:通过实践实验室框架的课程开发来加强无人机网络安全教育
  • 批准号:
    1955337
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
SaTC: EDU: Collaborative: Bolstering UAV Cybersecurity Education through Curriculum Development with Hands-on Laboratory Framework
SaTC:EDU:协作:通过实践实验室框架的课程开发来加强无人机网络安全教育
  • 批准号:
    2043183
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似国自然基金

基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
  • 批准号:
    82304250
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
肠道普拉梭菌代谢物丁酸抑制心室肌铁死亡改善老龄性心功能不全的机制研究
  • 批准号:
    82300430
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
社会网络关系对公司现金持有决策影响——基于共御风险的作用机制研究
  • 批准号:
    72302067
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向图像目标检测的新型弱监督学习方法研究
  • 批准号:
    62371157
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向开放域对话系统信息获取的准确性研究
  • 批准号:
    62376067
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317232
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338302
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
  • 批准号:
    2330940
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
  • 批准号:
    2330941
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317233
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了