Modulations of Periodic Waves in Applied Mathematics

应用数学中的周期波调制

基本信息

项目摘要

This project analyzes the existence and behavior of spatially periodic solutions to models for viscous fluid dynamics and optical signal propagation, with an emphasis on the stability of such patterns, that is their ability to persist when subjected to small perturbations. The study of the stability of a pattern is of practical interest since only stable solutions are expected to be observed in nature. Results of this research will provide scientists with new analytical tools and methodologies to understand observed laboratory experiments in both fluid dynamics and optical signal propagation contexts, and will lead to experimental design principles that will be used to better explain patterns observed in experiments, to predict the presence of new structures and patterns not previously observed, and to provide insight into the experimental construction of patterns. Both undergraduate and graduate students will receive training through research involvement in the project.The research project naturally divides into two sets of questions according to their fundamentally different physical applications. The first set seeks to develop and analyze new mathematical models relating to buoyancy driven viscous interfacial wave dynamics, such as magma rising through a porous rock. The results of this analysis is expected to provide mathematically rigorous justifications for currently unexplained laboratory observations. The second relates to the dynamics of optics waveguides and optical resonators and will resolve several outstanding issues that are of interest to both experimentalists and theoreticians alike. Importantly, both components involve mathematical work that can be experimentally tested and compared to laboratory experiments.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目分析了用于粘性流体动力学和光学信号传播模型的空间周期性解决方案的存在和行为,并着重于这种模式的稳定性,这是它们在受到小扰动时持续存在的能力。 对模式的稳定性的研究具有实际利益,因为在自然界中只能观察到稳定的解决方案。 这项研究的结果将为科学家提供新的分析工具和方法,以了解流体动力学和光学信号传播环境中观察到的实验室实验,并将导致实验设计原理,这些原理将用于更好地解释实验中观察到的模式,以预测未先前观察到的新结构和模式的存在,并洞悉模式的实验性结构。 本科生和研究生都将通过研究参与该项目接受培训。研究项目自然会根据其根本不同的物理应用分为两组问题。 第一组旨在开发和分析与浮力粘性界面波动力学有关的新数学模型,例如通过多孔岩石升起的岩浆。 预计该分析的结果将为目前无法解释的实验室观察提供数学上严格的理由。 第二个涉及光学波导和光学谐振器的动力学,并将解决实验学家和理论家都感兴趣的几个出色问题。 重要的是,这两个组件均涉及数学工作,可以在实验测试中与实验室实验进行比较。该奖项反映了NSF的法定任务,并且使用基金会的知识分子优点和更广泛的影响审查标准,被认为值得通过评估来获得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Subharmonic dynamics of wave trains in the Korteweg‐de Vries/Kuramoto‐Sivashinsky equation
Korteweg–de Vries/Kuramoto–Sivashinsky 方程中波列的分谐波动力学
  • DOI:
    10.1111/sapm.12475
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Johnson, Mathew A.;Perkins, Wesley R.
  • 通讯作者:
    Perkins, Wesley R.
共 1 条
  • 1
前往

Mathew Johnson其他文献

Minimum wages and the multiple functions of wages
最低工资和工资的多重功能
  • DOI:
  • 发表时间:
    2021
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Rubery;Mathew Johnson;D. Grimshaw
    J. Rubery;Mathew Johnson;D. Grimshaw
  • 通讯作者:
    D. Grimshaw
    D. Grimshaw
Examination of gender differences using the multiple groups DINA model
使用多组 DINA 模型检查性别差异
  • DOI:
  • 发表时间:
    2013
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mathew Johnson;Young;R. Sachdeva;Jianzhou Zhang;M. Waldman;Jung Yeon Park
    Mathew Johnson;Young;R. Sachdeva;Jianzhou Zhang;M. Waldman;Jung Yeon Park
  • 通讯作者:
    Jung Yeon Park
    Jung Yeon Park
Campus Classification, Identity, and Change: The Elective Carnegie Classification for Community Engagement
校园分类、身份和变化:社区参与的选修卡内基分类
  • DOI:
  • 发表时间:
    2020
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    John A. Saltmarsh;Mathew Johnson
    John A. Saltmarsh;Mathew Johnson
  • 通讯作者:
    Mathew Johnson
    Mathew Johnson
Towards More Disorganised Decentralisation? Collective Bargaining in the Public Sector Under Pay Restraint
走向更加无组织的权力下放?
Civil society organisations in and against the state: Advice, advocacy and activism on the margins of the labour market
国家内部和反对国家的民间社会组织:劳动力市场边缘的建议、倡导和行动
共 16 条
  • 1
  • 2
  • 3
  • 4
前往

Mathew Johnson的其他基金

Conference: 2024 KUMUNU-ISU Conference on PDE, Dynamical Systems and Applications
会议:2024 年 KUMUNU-ISU 偏微分方程、动力系统和应用会议
  • 批准号:
    2349508
    2349508
  • 财政年份:
    2024
  • 资助金额:
    $ 19.8万
    $ 19.8万
  • 项目类别:
    Standard Grant
    Standard Grant
Stochastic Calculus of Variations and Limit Theorems
随机变分和极限定理
  • 批准号:
    2054735
    2054735
  • 财政年份:
    2021
  • 资助金额:
    $ 19.8万
    $ 19.8万
  • 项目类别:
    Standard Grant
    Standard Grant
Decent Work and the city
体面劳动与城市
  • 批准号:
    MR/T019433/1
    MR/T019433/1
  • 财政年份:
    2020
  • 资助金额:
    $ 19.8万
    $ 19.8万
  • 项目类别:
    Fellowship
    Fellowship
4th Annual KUMUNU Conference in Partial Differential Equations, Dynamical Systems and Applications
第四届偏微分方程、动力系统和应用 KUMUNU 年度会议
  • 批准号:
    1753332
    1753332
  • 财政年份:
    2018
  • 资助金额:
    $ 19.8万
    $ 19.8万
  • 项目类别:
    Standard Grant
    Standard Grant
Existence, Stability, and Dynamics of Nonlinear Waves
非线性波的存在性、稳定性和动力学
  • 批准号:
    1614785
    1614785
  • 财政年份:
    2016
  • 资助金额:
    $ 19.8万
    $ 19.8万
  • 项目类别:
    Standard Grant
    Standard Grant
Stability of Nonlinear Waves in Dissipative and Dispersive PDE
耗散和色散偏微分方程中非线性波的稳定性
  • 批准号:
    1211183
    1211183
  • 财政年份:
    2012
  • 资助金额:
    $ 19.8万
    $ 19.8万
  • 项目类别:
    Standard Grant
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    0902192
    0902192
  • 财政年份:
    2009
  • 资助金额:
    $ 19.8万
    $ 19.8万
  • 项目类别:
    Fellowship Award
    Fellowship Award

相似国自然基金

基于周期性光场调控的新型Floquet能谷和拓扑材料的理论计算研究
  • 批准号:
    12304538
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
热处理蒸汽饱和度对木材周期性吸湿可逆的影响机理
  • 批准号:
    32301521
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
周期性分子团簇的强场超快动力学研究
  • 批准号:
    12374237
  • 批准年份:
    2023
  • 资助金额:
    53.00 万元
  • 项目类别:
    面上项目
周期高维复杂网络结构传染病模型的时空传播动力学
  • 批准号:
    12301189
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
哈密顿动力系统的周期性与稳定性缺失:扭转性方法
  • 批准号:
    12301213
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Diurnal variation of snow clouds over the Sea of Japan caused by inertia-gravity waves generated along the east coast of the Eurasian continent
欧亚大陆东岸惯性重力波引起的日本海雪云日变化
  • 批准号:
    23K03485
    23K03485
  • 财政年份:
    2023
  • 资助金额:
    $ 19.8万
    $ 19.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)
Nonlinear Elastic Waves in Passive and Active Periodic Media
无源和有源周期性介质中的非线性弹性波
  • 批准号:
    RGPIN-2020-06814
    RGPIN-2020-06814
  • 财政年份:
    2022
  • 资助金额:
    $ 19.8万
    $ 19.8万
  • 项目类别:
    Discovery Grants Program - Individual
    Discovery Grants Program - Individual
Mechanism of Antarctic land-fast ice variation and optimum routing of ice breaker
南极陆地固冰变化机制及破冰船优化路径
  • 批准号:
    22H00241
    22H00241
  • 财政年份:
    2022
  • 资助金额:
    $ 19.8万
    $ 19.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
    Grant-in-Aid for Scientific Research (A)
Optical generation and detection of GHz-THz acoustic waves in 1- and 2-dimensional nano-scale periodic structures and their application
一维和二维纳米级周期性结构中GHz-THz声波的光学产生和检测及其应用
  • 批准号:
    22K04938
    22K04938
  • 财政年份:
    2022
  • 资助金额:
    $ 19.8万
    $ 19.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)
Nonlinear Elastic Waves in Passive and Active Periodic Media
无源和有源周期性介质中的非线性弹性波
  • 批准号:
    RGPIN-2020-06814
    RGPIN-2020-06814
  • 财政年份:
    2021
  • 资助金额:
    $ 19.8万
    $ 19.8万
  • 项目类别:
    Discovery Grants Program - Individual
    Discovery Grants Program - Individual