C: Quantum-Enhanced Inertial Measurement Unit (QEIMU)

C:量子增强惯性测量单元(QEIMU)

基本信息

项目摘要

The NSF Convergence Accelerator program supports use-inspired, team-based, multidisciplinary efforts that address challenges of national importance and will produce deliverables of value to society in the near future. Current high-precision inertial sensors are bulky and prohibitive, holding back a wide impact, e.g., for self-driving cars, wearable healthcare devices, and secure navigation in GPS-denied environment.The goal of this project is to develop the functional inertial sensing modules and control units and converge on a fully integrated quantum-enhanced inertial measurement unit (QEIMU) prototype as the end- of-project deliverable. The intellectual merit of this project is in developing a multilayer silicon nitride platform on which team members will fabricate and assemble quantum-light sources, gyroscopes, and accelerometers.The QEIMU prototype will improve key performance metrics for gyroscopes and accelerometers, including the angle random walk (ARW), sensitivity, and bias by one-to-two orders of magnitude and, at the same time, enjoy low cost, compactness, a clear pathway to mass productivity, and robustness. Such unique features will make the QEIMU widely and readily available for the commercial markets of self-driving cars, aerospace navigation, and handheld sensing devices as well as space and defense-oriented applications, thereby creating near-term and profound societal impacts within 5-10 years.The QEIMU module is envisaged to be installed on 1) autonomous vehicles for secure navigation without GPS signals; 2) mobile devices as a complementary precise indoor positioning technique; and 3) activity recognition systems for medical diagnostics, home monitoring, assisted living, and sport-related applications. The broader impact of this project will be on inertial sensors market and their adoption in many markets that are currently untapped. The impact will also be on engagement and education of underrepresented groups in quantum technology. "This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
NSF Connergence Accelerator计划支持采用的基于团队的多学科努力,这些工作应对国家重要性的挑战,并将在不久的将来为社会带来价值的可交付成果。 Current high-precision inertial sensors are bulky and prohibitive, holding back a wide impact, e.g., for self-driving cars, wearable healthcare devices, and secure navigation in GPS-denied environment.The goal of this project is to develop the functional inertial sensing modules and control units and converge on a fully integrated quantum-enhanced inertial measurement unit (QEIMU) prototype as the end- of-project可交付。 The intellectual merit of this project is in developing a multilayer silicon nitride platform on which team members will fabricate and assemble quantum-light sources, gyroscopes, and accelerometers.The QEIMU prototype will improve key performance metrics for gyroscopes and accelerometers, including the angle random walk (ARW), sensitivity, and bias by one-to-two orders of magnitude and, at the same time, enjoy低成本,紧凑,明确的质量生产率和鲁棒性。 Such unique features will make the QEIMU widely and readily available for the commercial markets of self-driving cars, aerospace navigation, and handheld sensing devices as well as space and defense-oriented applications, thereby creating near-term and profound societal impacts within 5-10 years.The QEIMU module is envisaged to be installed on 1) autonomous vehicles for secure navigation without GPS signals; 2)移动设备作为一种互补的精确室内定位技术; 3)用于医疗诊断,家庭监测,辅助生活和与运动有关的应用的活动识别系统。该项目的更广泛影响将对惯性传感器市场及其在许多目前尚未开发的市场中的采用。影响还将对量子技术中代表性不足的群体的参与和教育。 “该奖项反映了NSF的法定任务,并通过使用基金会的知识分子优点和更广泛的影响审查标准来评估值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nanoscale Torsional Dissipation Dilution for Quantum Experiments and Precision Measurement
  • DOI:
    10.1103/physrevx.13.011018
  • 发表时间:
    2021-12
  • 期刊:
  • 影响因子:
    12.5
  • 作者:
    J. Pratt;A. Agrawal;Charles A. Condos;C. Pluchar;S. Schlamminger;Dalziel J. Wilson
  • 通讯作者:
    J. Pratt;A. Agrawal;Charles A. Condos;C. Pluchar;S. Schlamminger;Dalziel J. Wilson
Entanglement-enhanced optomechanical sensor array with application to dark matter searches
  • DOI:
    10.1038/s42005-023-01357-z
  • 发表时间:
    2023-09
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Anthony J. Brady;Xin Chen;Yi Xia;J. Manley;Mitul Dey Chowdhury;Kewen Xiao;Zhenghao Liu;R. Harnik;Dalziel J. Wilson;Zheshen Zhang;Quntao Zhuang
  • 通讯作者:
    Anthony J. Brady;Xin Chen;Yi Xia;J. Manley;Mitul Dey Chowdhury;Kewen Xiao;Zhenghao Liu;R. Harnik;Dalziel J. Wilson;Zheshen Zhang;Quntao Zhuang
Membrane-Based Optomechanical Accelerometry
基于膜的光机械加速度计
  • DOI:
    10.1103/physrevapplied.19.024011
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Chowdhury, Mitul Dey;Agrawal, Aman R.;Wilson, Dalziel J.
  • 通讯作者:
    Wilson, Dalziel J.
Entanglement-enhanced optomechanical sensing
  • DOI:
    10.1038/s41566-023-01178-0
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    35
  • 作者:
    Yi Xia;Aman R. Agrawal;C. Pluchar;Anthony J. Brady;Zhenghao Liu;Quntao Zhuang;Dalziel J. Wilson;Zheshen Zhang
  • 通讯作者:
    Yi Xia;Aman R. Agrawal;C. Pluchar;Anthony J. Brady;Zhenghao Liu;Quntao Zhuang;Dalziel J. Wilson;Zheshen Zhang
Entangled Sensor-Networks for Dark-Matter Searches
  • DOI:
    10.1103/prxquantum.3.030333
  • 发表时间:
    2022-09-06
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
    Brady, Anthony J.;Gao, Christina;Zhuang, Quntao
  • 通讯作者:
    Zhuang, Quntao
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zheshen Zhang其他文献

Frequency-Multiplexed Rate-Adaptive Quantum Key Distribution with High-Dimensional Encoding
具有高维编码的频率复用速率自适应量子密钥分配
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Sarihan;Kai;Xiang Cheng;Y. Lee;Changchen Chen;Tian Zhong;Hongchao Zhou;Zheshen Zhang;F. Wong;J. Shapiro;C. Wong
  • 通讯作者:
    C. Wong
Entanglement's benefit survives an entanglement-breaking channel.
纠缠的好处在纠缠破坏通道中仍然存在。
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Zheshen Zhang;M. Tengner;Tian Zhong;Franco N. C. Wong;Jeffrey H. Shapiro
  • 通讯作者:
    Jeffrey H. Shapiro
High Q‐Factor Polymer Microring Resonators Realized by Versatile Damascene Soft Nanoimprinting Lithography
通过多功能镶嵌软纳米压印光刻实现高 Q 因子聚合物微环谐振器
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    19
  • 作者:
    Wei‐Kuan Lin;Shuai Liu;Sungho Lee;Zheshen Zhang;Xueding Wang;Guan Xu;L. J. Guo
  • 通讯作者:
    L. J. Guo
New techniques for quantum communication systems
  • DOI:
  • 发表时间:
    2011-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zheshen Zhang
  • 通讯作者:
    Zheshen Zhang
Adaptive-Optics Enhanced Distribution of Entangled Photons over Turbulent Free-Space Optical Channels
自适应光学增强了湍流自由空间光通道上纠缠光子的分布

Zheshen Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zheshen Zhang', 18)}}的其他基金

CAREER: Photonic Quantum Machine Learning: From Architecture to Applications
职业:光子量子机器学习:从架构到应用
  • 批准号:
    2317471
  • 财政年份:
    2022
  • 资助金额:
    $ 499.87万
  • 项目类别:
    Continuing Grant
CAREER: Photonic Quantum Machine Learning: From Architecture to Applications
职业:光子量子机器学习:从架构到应用
  • 批准号:
    2144057
  • 财政年份:
    2022
  • 资助金额:
    $ 499.87万
  • 项目类别:
    Continuing Grant
Collaborative Research: Programmable Chip-Scale Quantum-Photonics Platform Based on Frequency-Comb Cluster-States for Multicasting Quantum Networks
合作研究:基于频梳簇态的多播量子网络的可编程芯片级量子光子平台
  • 批准号:
    2326780
  • 财政年份:
    2022
  • 资助金额:
    $ 499.87万
  • 项目类别:
    Standard Grant
C: Quantum-Enhanced Inertial Measurement Unit (QEIMU)
C:量子增强惯性测量单元(QEIMU)
  • 批准号:
    2134830
  • 财政年份:
    2021
  • 资助金额:
    $ 499.87万
  • 项目类别:
    Cooperative Agreement
NSF Convergence Accelerator-Track C: Quantum-Interconnected Optomechanical Transducers for Entanglement-Enhanced Force and Inertial Sensing
NSF 融合加速器 - 轨道 C:用于纠缠增强力和惯性传感的量子互连光机械传感器
  • 批准号:
    2040575
  • 财政年份:
    2020
  • 资助金额:
    $ 499.87万
  • 项目类别:
    Standard Grant
Collaborative Research: Programmable Chip-Scale Quantum-Photonics Platform Based on Frequency-Comb Cluster-States for Multicasting Quantum Networks
合作研究:基于频梳簇态的多播量子网络的可编程芯片级量子光子平台
  • 批准号:
    1920742
  • 财政年份:
    2019
  • 资助金额:
    $ 499.87万
  • 项目类别:
    Standard Grant
MRI: Development of Integrated Multi-Access Entangled-Photon Sources and Single-Photon Detector Array Instrument for Interdisciplinary Quantum Information Research
MRI:开发用于跨学科量子信息研究的集成多路纠缠光子源和单光子探测器阵列仪器
  • 批准号:
    1828132
  • 财政年份:
    2018
  • 资助金额:
    $ 499.87万
  • 项目类别:
    Standard Grant

相似国自然基金

基于超声谐波阵列增强的惯性摩擦焊弱结合缺陷检测方法
  • 批准号:
    52375328
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
视觉惯性组合导航的增强多状态约束滤波技术研究
  • 批准号:
    62373031
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
基于脉冲自旋操控的局域增强原子自旋惯性测量方法
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于脉冲自旋操控的局域增强原子自旋惯性测量方法
  • 批准号:
    62203030
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
复杂环境下惯性/视觉多源信息增强北斗PPP-RTK定位关键技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Enhanced atomic co-magnetometry for inertial sensing
用于惯性传感的增强型原子共磁测量
  • 批准号:
    EP/Y004817/1
  • 财政年份:
    2023
  • 资助金额:
    $ 499.87万
  • 项目类别:
    Research Grant
Q-NAV: Quantum Enhanced Inertial Navigation Systems
Q-NAV:量子增强惯性导航系统
  • 批准号:
    10071739
  • 财政年份:
    2023
  • 资助金额:
    $ 499.87万
  • 项目类别:
    Small Business Research Initiative
Enhanced atomic co-magnetometry for inertial sensing
用于惯性传感的增强型原子共磁测量
  • 批准号:
    EP/Y005236/1
  • 财政年份:
    2023
  • 资助金额:
    $ 499.87万
  • 项目类别:
    Research Grant
C: Quantum-Enhanced Inertial Measurement Unit (QEIMU)
C:量子增强惯性测量单元(QEIMU)
  • 批准号:
    2134830
  • 财政年份:
    2021
  • 资助金额:
    $ 499.87万
  • 项目类别:
    Cooperative Agreement
NSF Convergence Accelerator-Track C: Quantum-Interconnected Optomechanical Transducers for Entanglement-Enhanced Force and Inertial Sensing
NSF 融合加速器 - 轨道 C:用于纠缠增强力和惯性传感的量子互连光机械传感器
  • 批准号:
    2040575
  • 财政年份:
    2020
  • 资助金额:
    $ 499.87万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了