Quantum Terahertz Nanoelectronics (QuanTeraN)
量子太赫兹纳米电子学 (QuanTeraN)
基本信息
- 批准号:EP/X013456/1
- 负责人:
- 金额:$ 66.88万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The UK is one of the leading countries in Terahertz (THz) science and technology. At the moment, there are several research groups and companies (QMC Instruments, Teraview, Laser Quantum etc.) across the country specialising in research and development of THz sources, detectors as well as applications for fundamental research and commercial use. Even though there is a strong THz community in the UK, there are no links between THz and Quantum Technology research. Quantum technology is right now at the forefront of UK's research and innovation. With investments totalling up to £1bn [1], elusive quantum theories are transformed into new technologies, in the so called 'second quantum revolution'. Qubits, the fundamental building blocks of all quantum technologies, have come in an abundance of competing flavours ranging from superconducting, flying, topological to atomic and optical. Despite the large variation, all these qubits have one thing in common: the need of a robust, reliable and scalable technology for their generation, detection and manipulation. Hybrid, high-frequency optoelectronic qubits hold a great promise for robustness and scalability. In this project we will develop the next generation of THz optoelectronic sources with a particular focus on their energy efficiency. Standard optoelectronic devices are at a disadvantage for using them together with quantum circuits due to their high operation energy and low optical-to-electrical conversion efficiency. This, unfortunately, results into an unwanted dissipated heat and when it is put in the proximity of a quantum circuit it can seriously disrupt any quantum information carried by that circuit. The proposed sources will be at least 20 to 50 times more efficient and can used in the future alongside quantum nanoelectronic circuits to generate ultrafast, picosecond qubits without disrupting the quantum nature of neighbouring quantum circuits. In addition, the novel optoelectronic devices developed in this project can be used to study fundamental quantum mechanical interactions at picosecond and sub-picosecond timescales. This research will be undertaken at the Department of Electronic and Nanoscale Engineering at the James Watt School of Engineering, University of Glasgow. The duration of this project is 24 months and it will involve advanced nanofabrication at the James Watt Nanofabrication Centre and the development of an optoelectronic setup. This setup will have capabilities of performing ultrafast pump-probe measurements at near infrared wavelengths. Through this setup we will generate energy efficient picosecond (THz) pulses, measure their absolute efficiency and compare this with standard commercial devices. This project benefits from collaborations and support from research groups at the Institute Neel, CNRS, France and QMC Instruments. The results from this research will be a step forward towards more robust and scalable qubits as well as accessing ultrafast quantum dynamics.
英国是太赫兹(THz)科学技术的领先国家之一,目前全国有多个研究团体和公司(QMC Instruments、Teraview、Laser Quantum等)专门从事太赫兹源的研究和开发。 、探测器以及基础研究和商业用途的应用尽管英国有强大的太赫兹社区,但太赫兹和量子技术研究目前处于前沿。英国的研究和创新投资总额高达 10 亿英镑 [1],在所谓的“第二次量子革命”中,难以捉摸的量子理论已转化为新技术,量子比特是所有量子技术的基本组成部分。尽管存在很大差异,但所有这些量子位都有一个共同点:需要一种强大、可靠和可扩展的技术来生成、检测和扩展量子位。在这个项目中,我们将开发下一代太赫兹光电源,特别关注其能源效率,而标准光电设备在使用它们方面处于劣势。不幸的是,由于量子电路的高运行能量和低光电转换效率,这会导致不必要的耗散热量,当将其放置在量子电路附近时,它会产生不必要的热量。严重破坏该电路承载的任何量子信息。所提出的源的效率将至少提高 20 到 50 倍,并且可以在未来与量子纳米电子电路一起使用,以生成超快的皮秒量子位,而不会破坏相邻量子电路的量子性质。此外,该项目开发的新型光电器件可用于研究皮秒和亚皮秒时间尺度的基本量子力学相互作用。这项研究将在电子和纳米工程系进行。该项目为期 24 个月,将涉及詹姆斯瓦特纳米加工中心的先进纳米加工以及光电装置的开发,该装置将具有执行超快泵浦的能力。通过这种设置,我们将生成节能的皮秒 (THz) 脉冲,测量其绝对效率,并将其与标准商业设备进行比较。该项目受益于该研究所研究小组的合作和支持。 Neel、CNRS、法国和 QMC Instruments 的这项研究结果将是朝着更强大和可扩展的量子位以及实现超快量子动力学迈出的一步。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Giorgos Georgiou其他文献
Giorgos Georgiou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
强场驱动下介质中辐射的高次谐波和太赫兹波
- 批准号:12374263
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
基于太赫兹行波管放大器的高效率多路功率合成技术的研究
- 批准号:62371102
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
面向增强核磁共振波谱系统的频率捷变太赫兹回旋管小型化及频率一致性和功率稳定性研究
- 批准号:62371092
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
基于微环高精度微扰鉴频滤波的光子太赫兹跳频信号生成技术研究
- 批准号:62305052
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
激光与金属丝靶相互作用产生高效太赫兹辐射的物理机理研究
- 批准号:12305276
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Terahertz-frequency sensors for atmospheric chemistry and space research (renewal)
用于大气化学和空间研究的太赫兹频率传感器(更新)
- 批准号:
MR/Y011775/1 - 财政年份:2024
- 资助金额:
$ 66.88万 - 项目类别:
Fellowship
AuNPs and DNA Aptamer-Driven Terahertz Sensor for Highly Sensitive Detection of Small Molecules
AuNP 和 DNA 适配体驱动的太赫兹传感器,用于小分子的高灵敏度检测
- 批准号:
24K07524 - 财政年份:2024
- 资助金额:
$ 66.88万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Terahertz Imaging for Side-Channel Attacks
用于侧信道攻击的太赫兹成像
- 批准号:
NI230100072 - 财政年份:2024
- 资助金额:
$ 66.88万 - 项目类别:
National Intelligence and Security Discovery Research Grants
Next Generation Terahertz Materials
下一代太赫兹材料
- 批准号:
DP240103404 - 财政年份:2024
- 资助金额:
$ 66.88万 - 项目类别:
Discovery Projects
6G Terahertz Communications for Future Heterogeneous Wireless Network
面向未来异构无线网络的 6G 太赫兹通信
- 批准号:
EP/Y035135/1 - 财政年份:2024
- 资助金额:
$ 66.88万 - 项目类别:
Research Grant