Collaborative Research: Programmable Chip-Scale Quantum-Photonics Platform Based on Frequency-Comb Cluster-States for Multicasting Quantum Networks
合作研究:基于频梳簇态的多播量子网络的可编程芯片级量子光子平台
基本信息
- 批准号:2326780
- 负责人:
- 金额:$ 27.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2024-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The field of quantum information science and technology hinges on unique quantum mechanical phenomena such as entanglement to enable unprecedented capabilities for communication, sensing, and computing. Among these technologies, quantum communication is foreseen to create broad near-term impacts as seen in recent quantum testbeds, teleportation, and entanglement distribution experiments. It is also envisaged to underpin future's fully connected quantum computers, quantum sensors, and a global secure communication network. Mainstream quantum communication platforms, however, rely on expensive, unscalable bulk optics components that impede their widespread deployment. While recent work on integrated quantum communication devices opens a new route to the development of compact quantum-communication systems, an integrated quantum photonics platform encompassing multiple, functional modules on a single chip to generate and process large-scale entanglement remains elusive. This collaborative project will develop a room-temperature integrated quantum photonics platform that incorporates quantum communication modules for scalable generation, processing, multicasting, and detection of large-scale multipartite entanglement in a quantum communication network. This project will leverage the nanofabrication and testing expertise at UCLA and the Interdisciplinary Quantum Information Research and Engineering (INQUIRE) testbed at the University of Arizona (UA) to demonstrate the capability of utilizing a highly compact and mass producible integrated platform to generate, multicast, and detect large-scale entanglement in a real-world setting. The outcome of the project will lay the foundation for future's quantum internet comprised of compact devices linked by large-scale multipartite entanglement. This project will educate and train the next-generation workforce for quantum information science and technology. Specifically, undergraduate and graduate students will grasp essential knowledge and expertise of nanophotonics and quantum information science and technology. They will gain hands-on experience while undertaking research in the INQUIRE testbed. This project will also provide opportunities for various industrial partners to be exposed to state-of-the-art tools grown out of nanophotonics and quantum information science and technology.Technical: The team will follow a system-level design approach for the integrated quantum photonics platform. The project will advance knowledge through a new quantum encoding-and-decoding paradigm that will be seamlessly incorporated into a physical architecture to offer intrinsic protection against loss. The physical architecture will consist of programmable quantum sources, processing units, and receivers using the silicon nitride material system that offer dramatic functionalities. Through ��(3 four-wave mixing in microring resonators and Mach-Zehnder interferometers, the silicon nitride chipset section will produce and process quantum signals with high fidelity and low loss. The silicon nitride section will also provide a classical frequency comb to serve as the pump for the microring resonators and phase references for the Mach-Zehnder interferometers. Programming of the quantum sources, processing units, and receivers will be by modulating the classical comb spectral lines in an integrated hybrid silicon section. In our frequency comb cluster system, the quantum signals will be immune to the programming-induced loss and disturbance. The integrated quantum photonics platform will be programmed to support two system-level quantum communication implementations: 1) a high-rate secure communication system based on quantum illumination; and 2) an entanglement multicasting and purification demonstration.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
量子信息科学与技术领域依赖于独特的量子力学现象,例如纠缠,以实现前所未有的通信、传感和计算能力。在这些技术中,量子通信预计将产生广泛的近期影响,如最近的量子测试台、隐形传态和纠缠分布实验所示。它还预计将支持未来完全连接的量子计算机、量子传感器和全球安全通信网络。然而,主流量子通信平台依赖于昂贵且不可扩展的体光学元件,这阻碍了其广泛部署。虽然最近关于集成量子通信设备的工作为紧凑型量子通信系统的开发开辟了一条新途径,但在单个芯片上包含多个功能模块以生成和处理大规模纠缠的集成量子光子平台仍然难以实现。该合作项目将开发一个室温集成量子光子平台,该平台包含量子通信模块,用于量子通信网络中大规模多部分纠缠的可扩展生成、处理、多播和检测。该项目将利用加州大学洛杉矶分校的纳米制造和测试专业知识以及亚利桑那大学 (UA) 的跨学科量子信息研究与工程 (INQUIRE) 测试平台,展示利用高度紧凑且可大规模生产的集成平台来生成、组播、并检测现实世界中的大规模纠缠。该项目的成果将为未来的量子互联网奠定基础,该互联网由通过大规模多部分纠缠连接的紧凑设备组成。该项目将教育和培训量子信息科学技术的下一代劳动力。具体来说,本科生和研究生将掌握纳米光子学和量子信息科学与技术的基本知识和专业知识。他们将在 INQUIRE 测试台中进行研究时获得实践经验。该项目还将为各个工业合作伙伴提供机会,让他们接触到由纳米光子学和量子信息科学技术发展而来的最先进的工具。技术:该团队将遵循集成量子光子学的系统级设计方法平台。该项目将通过新的量子编码和解码范例来推进知识的发展,该范例将无缝地融入到物理架构中,以提供内在的防止丢失的保护。物理架构将由可编程量子源、处理单元和接收器组成,这些接收器使用氮化硅材料系统,提供引人注目的功能。通过微环谐振器和马赫曾德干涉仪中的“3”四波混频,氮化硅芯片组部分将产生和处理高保真度和低损耗的量子信号。氮化硅部分还将提供经典频率梳用作微环谐振器的泵和马赫-曾德尔干涉仪的相位参考,将由量子源、处理单元和接收器进行编程。在集成混合硅部分中调制经典梳状谱线,量子信号将不受编程引起的损耗和干扰的影响,集成量子光子平台将被编程为支持两个系统级量子。通信实现:1)基于量子照明的高速安全通信系统; 2)纠缠多播和净化演示。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Entanglement-enhanced dual-comb spectroscopy
- DOI:10.1038/s41534-023-00758-w
- 发表时间:2023-04
- 期刊:
- 影响因子:7.6
- 作者:Haowei Shi;Zaijun Chen;S. Fraser;Mengjie Yu;Zheshen Zhang;Quntao Zhuang
- 通讯作者:Haowei Shi;Zaijun Chen;S. Fraser;Mengjie Yu;Zheshen Zhang;Quntao Zhuang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zheshen Zhang其他文献
Frequency-Multiplexed Rate-Adaptive Quantum Key Distribution with High-Dimensional Encoding
具有高维编码的频率复用速率自适应量子密钥分配
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
M. Sarihan;Kai;Xiang Cheng;Y. Lee;Changchen Chen;Tian Zhong;Hongchao Zhou;Zheshen Zhang;F. Wong;J. Shapiro;C. Wong - 通讯作者:
C. Wong
Entanglement's benefit survives an entanglement-breaking channel.
纠缠的好处在纠缠破坏通道中仍然存在。
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:8.6
- 作者:
Zheshen Zhang;M. Tengner;Tian Zhong;Franco N. C. Wong;Jeffrey H. Shapiro - 通讯作者:
Jeffrey H. Shapiro
High Q‐Factor Polymer Microring Resonators Realized by Versatile Damascene Soft Nanoimprinting Lithography
通过多功能镶嵌软纳米压印光刻实现高 Q 因子聚合物微环谐振器
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:19
- 作者:
Wei‐Kuan Lin;Shuai Liu;Sungho Lee;Zheshen Zhang;Xueding Wang;Guan Xu;L. J. Guo - 通讯作者:
L. J. Guo
Experimental Demonstration of an Entangled Radiofrequency-Photonic Sensor Network
纠缠射频光子传感器网络的实验演示
- DOI:
10.1364/cleo_qels.2020.fm1c.4 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Yi Xia;Wei Li;William Clark;Darlene Hart;Quntao Zhuang;Zheshen Zhang - 通讯作者:
Zheshen Zhang
Adaptive-Optics Enhanced Distribution of Entangled Photons over Turbulent Free-Space Optical Channels
自适应光学增强了湍流自由空间光通道上纠缠光子的分布
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Vijay Nafria;Chaohan Cui;I. Djordjevic;Zheshen Zhang - 通讯作者:
Zheshen Zhang
Zheshen Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zheshen Zhang', 18)}}的其他基金
CAREER: Photonic Quantum Machine Learning: From Architecture to Applications
职业:光子量子机器学习:从架构到应用
- 批准号:
2317471 - 财政年份:2022
- 资助金额:
$ 27.5万 - 项目类别:
Continuing Grant
CAREER: Photonic Quantum Machine Learning: From Architecture to Applications
职业:光子量子机器学习:从架构到应用
- 批准号:
2144057 - 财政年份:2022
- 资助金额:
$ 27.5万 - 项目类别:
Continuing Grant
C: Quantum-Enhanced Inertial Measurement Unit (QEIMU)
C:量子增强惯性测量单元(QEIMU)
- 批准号:
2330310 - 财政年份:2022
- 资助金额:
$ 27.5万 - 项目类别:
Cooperative Agreement
C: Quantum-Enhanced Inertial Measurement Unit (QEIMU)
C:量子增强惯性测量单元(QEIMU)
- 批准号:
2134830 - 财政年份:2021
- 资助金额:
$ 27.5万 - 项目类别:
Cooperative Agreement
NSF Convergence Accelerator-Track C: Quantum-Interconnected Optomechanical Transducers for Entanglement-Enhanced Force and Inertial Sensing
NSF 融合加速器 - 轨道 C:用于纠缠增强力和惯性传感的量子互连光机械传感器
- 批准号:
2040575 - 财政年份:2020
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
Collaborative Research: Programmable Chip-Scale Quantum-Photonics Platform Based on Frequency-Comb Cluster-States for Multicasting Quantum Networks
合作研究:基于频梳簇态的多播量子网络的可编程芯片级量子光子平台
- 批准号:
1920742 - 财政年份:2019
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
MRI: Development of Integrated Multi-Access Entangled-Photon Sources and Single-Photon Detector Array Instrument for Interdisciplinary Quantum Information Research
MRI:开发用于跨学科量子信息研究的集成多路纠缠光子源和单光子探测器阵列仪器
- 批准号:
1828132 - 财政年份:2018
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
相似国自然基金
“可编程序贯级联增效”策略驱动的“代谢-免疫”调控用于增强三阴性乳腺癌的联合免疫治疗研究
- 批准号:82303820
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
铌酸锂可编程光子处理器原理和器件研究
- 批准号:12304418
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
负刚度超结构力学性能调控机制、可编程设计及缓冲减振特性研究
- 批准号:12302190
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于可编程非对称结构的微纳机器人体内定向运动研究
- 批准号:62373004
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
三磷酸腺苷驱动的高分子非平衡自组装体系及其可编程生物功能研究
- 批准号:22375074
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: DMREF:Programmable Design, Synthesis, and Forensics of Soft Materials
合作研究:DMREF:软材料的可编程设计、合成和取证
- 批准号:
2324168 - 财政年份:2023
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Enabling Programmable In-Network Security for an Attack-Resilient Smart Grid
协作研究:SaTC:核心:小型:为抵御攻击的智能电网实现可编程网内安全
- 批准号:
2247722 - 财政年份:2023
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
Collaborative Research: FMitF: Track I: A Formal Verification and Implementation Stack for Programmable Logic Controllers
合作研究:FMitF:第一轨:可编程逻辑控制器的形式验证和实现堆栈
- 批准号:
2425711 - 财政年份:2023
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
Collaborative Research: NSF Workshop on Automated, Programmable and Self Driving Labs
合作研究:NSF 自动化、可编程和自动驾驶实验室研讨会
- 批准号:
2335910 - 财政年份:2023
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
Collaborative Research: NSF Workshop on Automated, Programmable and Self Driving Labs
合作研究:NSF 自动化、可编程和自动驾驶实验室研讨会
- 批准号:
2335909 - 财政年份:2023
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant