FuSe: Ultra-Low-Energy Logic-in-Memory Computing using Multiferroic Spintronics
FuSe:使用多铁自旋电子学的超低能耗内存逻辑计算
基本信息
- 批准号:2329111
- 负责人:
- 金额:$ 192.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2026-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Non-technical DescriptionThe energy consumption of computing is a significant global challenge, as the demand for computing explodes. If current trends persist, computing will soon become the dominant energy consumer. Limits to energy production and storage will limit availability of critical applications and hinder development of new technologies. Spintronics, which uses an electron’s spin as well as its charge, offer a new paradigm for computing that can meet this challenge. This FuSe project aims to enable a new generation of energy-efficient computing devices by integrating materials research, device physics and ultimately circuit design and architectures. These devices will be based on materials with electric and magnetic properties that can be controlled by external fields, called multiferroics. The team is committed to educating the next generation semiconductor workforce. A diverse group of graduate and undergraduate students will be trained in interdisciplinary research, with a focus on those from underrepresented groups in STEM. The PIs will also develop educational materials and participate in K-12 outreach events to inspire a broad audience.Technical DescriptionThis project explores electrically driven and detected spin transport in a voltage-switchable multiferroic insulator as the foundation for ultra-low-energy logic-in-memory computing. By exploiting the correlation and non-volatility in multiferroic materials, the team aims to greatly reduce the operating voltage of computers substantially below what is achievable by today's complementary metal oxide semiconductor (CMOS) technology and enable transformative logic-in-memory computing architectures with significantly alleviated communication costs between memory and logic. The project seeks to obtain fundamental understanding and transformative innovations by probing multiferroic materials and devices at unprecedented dimension, time, and energy scales. The team aims to address engineering challenges by integrating bottom-up research on materials synthesis, fabrication, and junction physics, and top-down from systems and circuit requirements. The project involves significant efforts to develop advanced characterization techniques including optical spectroscopy, electron microscopy, and magnetotransport for multiferroic materials and heterostructures. In addition, the project develops a circuit simulation framework and reference circuit designs, to realistically evaluate multiferroic spintronics at the system level and facilitate top-down research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述随着计算的需求爆炸,计算的能源消耗是一个重大的全球挑战。如果当前趋势持续存在,那么计算将很快成为主要的能源消费者。能源生产和存储的限制将限制关键应用的可用性,并阻碍新技术的开发。使用电子旋转及其充电的SpinTronics为计算机提供了一种新的范式,可以满足这一挑战。该保险丝项目旨在通过整合材料研究,设备物理以及最终的电路设计和体系结构来实现新一代节能计算设备。这些设备将基于具有电气和磁性特性的材料,这些材料可以由外部磁场控制,称为多曲子。该团队致力于教育下一代半导体劳动力。跨学科研究的毕业生和本科生的潜水员小组将接受培训,重点是STEM中代表性不足的人群。 PIS还将开发教育材料并参加K-12外展活动,以激发广泛的受众群体。技术描述该项目在可电压转换的多效性绝缘子中探索电动驱动和检测到的旋转运输,作为超低能量逻辑计算的超低能量逻辑计算的基础。通过利用多效材料中的相关性和非挥发性,该团队的目的是大大降低计算机的运行电压,基本上低于当今完整的金属氧化物半导体(CMOS)技术所实现的速度,并启用具有变革性的逻辑计算体系结构,并在内存和logic之间显着缓解了通信成本。该项目旨在通过在前所未有的维度,时间和能量量表上探测多种材料和设备来获得基本的理解和变革性创新。该团队旨在通过整合有关材料合成,制造和结物理学的自下而上的研究以及从系统和电路要求的自上而下的研究来应对工程挑战。该项目涉及开发高级表征技术,包括光谱,电子显微镜和用于多效材料和异质结构的磁转运。此外,该项目还开发了电路模拟框架和参考电路设计,以实际评估系统级别的多性旋转三位型,并促进自上而下的研究。这项奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子优点和更广泛的影响审查标准来通过评估来通过评估来获得的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kaiyuan Yang其他文献
CAMA: Energy and Memory Efficient Automata Processing in Content-Addressable Memories
CAMA:内容可寻址存储器中的能源和存储器高效自动机处理
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Yi Huang;Zhiyu Chen;Dai Li;Kaiyuan Yang - 通讯作者:
Kaiyuan Yang
Phosphorus-carbon bond cleavage and tetrahedrane cluster activation in the reaction between bis(diphenylphosphino)maleic anhydride (BMA) and PhCCo3(CO)9. Syntheses, kinetic studies, and x-ray diffraction structures of PhCCo3(CO)7(bma) and [cyclic] Co3(CO)6(.mu.2-.eta.2,.eta.1-C(Ph)C:C(PPh2)C(O)OC(O)
双(二苯基膦)马来酸酐 (BMA) 和 PhCCo3(CO)9 反应中磷碳键断裂和四面体簇活化。
- DOI:
- 发表时间:
1993 - 期刊:
- 影响因子:0
- 作者:
Kaiyuan Yang;Janna M. Smith;S. Bott;M. Richmond - 通讯作者:
M. Richmond
A transformer-based filtering technique to lower LC-oscillator phase noise
基于变压器的滤波技术可降低 LC 振荡器相位噪声
- DOI:
10.1109/iscas.2012.6271501 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Qing Jin;Kaiyuan Yang;Chunyuan Zhou;Dongxu Yang;Lei Zhang;Yan Wang;Zhiping Yu;Weidong Geng - 通讯作者:
Weidong Geng
DCT-RAM: A Driver-Free Process-In-Memory 8T SRAM Macro with Multi-Bit Charge-Domain Computation and Time-Domain Quantization
DCT-RAM:具有多位电荷域计算和时域量化功能的免驱动内存处理 8T SRAM 宏
- DOI:
10.1109/cicc53496.2022.9772826 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Zhiyu Chen;Qing Jin;Zhanghao Yu;Yanzhi Wang;Kaiyuan Yang - 通讯作者:
Kaiyuan Yang
25.3 Toward Exponential Growth of Therapeutic Neurotechnology
25.3 神经治疗技术的指数级增长
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Jacob T. Robinson;Joshua Woods;Kaiyuan Yang - 通讯作者:
Kaiyuan Yang
Kaiyuan Yang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kaiyuan Yang', 18)}}的其他基金
SHF: Medium: Efficient and Scalable Pattern Matching via Hardware-Software Co-Design
SHF:中:通过软硬件协同设计实现高效且可扩展的模式匹配
- 批准号:
2313062 - 财政年份:2023
- 资助金额:
$ 192.5万 - 项目类别:
Continuing Grant
CAREER: Reliable and Secure Minimally Invasive Bioelectronic Implants through Contextual Awareness
职业:通过情境意识实现可靠、安全的微创生物电子植入
- 批准号:
2146476 - 财政年份:2022
- 资助金额:
$ 192.5万 - 项目类别:
Continuing Grant
EAGER: SARE: Physically disordered nanostructures for lightweight and secure authentication on CMOS platform
EAGER:SARE:物理无序纳米结构,可在 CMOS 平台上实现轻量级安全身份验证
- 批准号:
2028997 - 财政年份:2020
- 资助金额:
$ 192.5万 - 项目类别:
Standard Grant
相似国自然基金
高性能纤维混凝土构件抗爆的强度预测
- 批准号:51708391
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
磷脂酶Ultra特异性催化油脂体系中微量磷脂分子的调控机制研究
- 批准号:31471690
- 批准年份:2014
- 资助金额:90.0 万元
- 项目类别:面上项目
超高频超宽带系统射频基带补偿理论与技术的研究
- 批准号:61001097
- 批准年份:2010
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
适应纳米尺度CMOS集成电路DFM的ULTRA模型完善和偏差模拟技术研究
- 批准号:60976066
- 批准年份:2009
- 资助金额:41.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
- 批准号:
2341238 - 财政年份:2024
- 资助金额:
$ 192.5万 - 项目类别:
Standard Grant
Ultra-low noise magnetic environments
超低噪声磁场环境
- 批准号:
ST/Y509978/1 - 财政年份:2024
- 资助金额:
$ 192.5万 - 项目类别:
Research Grant
Ultra Low Phase Noise Analysis & Measurement
超低相位噪声分析
- 批准号:
10089379 - 财政年份:2024
- 资助金额:
$ 192.5万 - 项目类别:
Collaborative R&D
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
- 批准号:
2341237 - 财政年份:2024
- 资助金额:
$ 192.5万 - 项目类别:
Continuing Grant
Implementing VVC codec in WebRTC video conferencing and Ultra Low Latency CDN for reduced network footprint
在 WebRTC 视频会议和超低延迟 CDN 中实施 VVC 编解码器,以减少网络占用
- 批准号:
10114427 - 财政年份:2024
- 资助金额:
$ 192.5万 - 项目类别:
Collaborative R&D