Collaborative Research: FuSe: Collaborative Optically Disaggregated Arrays of Extreme-MIMO Radio Units (CODAeMIMO)

合作研究:FuSe:Extreme-MIMO 无线电单元的协作光学分解阵列 (CODAeMIMO)

基本信息

  • 批准号:
    2328946
  • 负责人:
  • 金额:
    $ 47万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2026-09-30
  • 项目状态:
    未结题

项目摘要

NonTechnical:This research aims to create a new set of technologies enabling collaborative optically disaggregated extreme multiple input multiple output (CODAeMIMO) high-capacity communication and high-fidelity sensing systems. The researched technology stack spans novel cell-free collaborative extreme MIMO algorithms and communication infrastructure concepts enabled by new optically disaggregated array architectures, to electronic-photonic links and new fundamental circuit and device components – all optimized to enable the required communication and sensing system scalability. The research explores the design of future dense, large-scale extreme MIMO communications and sensing platforms, enabling significant advances in the array power, size and signal fidelity/processing capability, by designing electronic-photonic systems-on-chip (EPSoCs) that enable direct connection of mm-wave signals from antenna arrays to the central processing hub nodes. The EPSoCs enable inexpensive, collaborative, disaggregated arrays in a new cell-free architecture paving the way to a new generation of communication systems with significantly higher spectrum utilization, through larger number of users and higher spatial utilization. This collaborative multi-disciplinary work will educate a unique crop of engineers and scientists that cross the boundaries of communication systems design for mm-wave, extreme MIMO and large-scale phase-array beamformers, and electronic-photonic systems and devices, which are in severe demand for building advanced next-generation wireless systems. The Principal Investigators have an established track record of direct engagement with high-school students providing summer internships at Berkeley Wireless Research Center and exemplary undergraduate research activities at Boston University. The goal is to utilize these exciting research directions with big social impact outcomes to attract underrepresented students to undergraduate education in engineering. The educational and outreach activities will ensure early exposure and continued training of new generation of leaders in this field, from K-12, through undergraduate and graduate studies, and continuing workforce education, with special focus on underrepresented students.This research approach will utilize advanced monolithic electronics-photonics integration in a single RF photonic EPSoC in advanced high-volume manufacturing platforms like 45nm SOI CMOS. At the core of the researched approach is the demonstration of mm-wave electronic-photonic integrated circuit functions. At the device level, the approach will demonstrate efficient “photonic molecule” electro-optic modulators based on coupled active silicon microrings, which provide electro-optic signal conversion efficiencies 15-50dB higher than conventional silicon photonic microring (and Mach-Zehnder) modulators. The goal of the effort is to develop the advanced photonic and circuit components for the researched antenna-to-photons link architecture as well as provide an experimental demonstration of the researched wavelength-division multiplexed analog photonic link prototype featuring the advanced photonic components and mm-wave circuits specifically tuned and monolithically integrated with these photonic components. The effort will also produce scalable device and link models correlated with the experimental data to enable engineering of larger array prototypes and development of collaborative, distributed extreme MIMO algorithms and system-level architectures.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术:本研究旨在创建一套新的协作技术,以实现光学分解极端多输入多输出 (CODAeMIMO) 高容量通信和高保真传感系统。所研究的技术堆栈涵盖新型无细胞协作极端 MIMO 算法和通信。由新的光学分解阵列架构、电子光子链路以及新的基本电路和设备组件实现的基础设施概念——所有这些都经过优化,以实现所需的通信和传感系统可扩展性。该研究探索了未来的设计。密集、大规模极端 MIMO 通信和传感平台,通过设计可直接连接毫米波信号的电子光子片上系统 (EPSoC),在阵列功率、尺寸和信号保真度/处理能力方面取得显着进步从天线阵列到中央处理中心节点,EPSoC 在新的无单元架构中实现了廉价、协作、分解的阵列,为新一代通信系统铺平了道路,该系统通过更大数量的用户和更高的空间利用率显着提高了频谱利用率。这项多学科协作工作将培养一批独特的工程师和科学家,他们跨越毫米波、极端 MIMO 和大规模相控阵波束形成器以及电子光子系统和设备的通信系统设计的界限。迫切需要构建先进的下一代无线系统。首席研究员在伯克利无线研究中心提供暑期实习和波士顿大学示范性本科生研究活动方面有着直接参与的记录。这些令人兴奋的研究方向具有巨大的社会影响成果可供利用吸引代表性不足的学生接受工程本科教育。教育和推广活动将确保从 K-12 开始,通过本科和研究生学习以及继续劳动力教育,尽早接触和持续培训该领域的新一代领导者,特别关注该研究方法将在先进的大批量制造平台(如 45nm SOI CMOS)的单个 RF 光子 EPSoC 中利用先进的单片电子-光子集成。在器件层面,该方法将展示基于耦合有源硅微环的“光子分子”电光调制器,其电光信号转换效率比传统硅光子高15-50dB。微环(和马赫-曾德尔)调制器的目标是为所研究的天线到光子链路架构开发先进的光子和电路组件,并提供实验演示。研究的波分复用模拟光子链路原型具有先进的光子元件和专门调谐并与这些光子元件单片集成的毫米波电路,这项工作还将产生与实验数据相关的可扩展设备和链路模型,以实现更大的工程。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Milos Popovic其他文献

The landscape of high-affinity human antibodies against intratumoral antigens
针对肿瘤内抗原的高亲和力人类抗体的前景
  • DOI:
    10.1101/2021.02.06.430058
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    G. Rakocevic;I. Glotova;I. de Santiago;B. Ç. Toptas;Milena Popovic;Milos Popovic;D. Leone;A. Stachyra;R. Rozenfeld;Deniz Kural;D. Biasci
  • 通讯作者:
    D. Biasci
Keeping Friends Close, and Their Oil Closer: Rethinking the Role of the Shanghai Cooperation Organization in China's Strive for Energy Security in Kazakhstan
拉近朋友,拉近石油:重新思考上海合作组织在中国争取哈萨克斯坦能源安全中的作用
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Milos Popovic
  • 通讯作者:
    Milos Popovic
Fragile Proxies: Explaining Rebel Defection Against Their State Sponsors
脆弱的代理人:解释叛乱分子背叛其国家赞助者的原因
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Milos Popovic
  • 通讯作者:
    Milos Popovic
Managing Internationalized Civil Wars
管理国际化内战
  • DOI:
    10.1093/acrefore/9780190228637.013.573
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Erin K. Jenne;Milos Popovic
  • 通讯作者:
    Milos Popovic
Inter-Rebel Alliances in the Shadow of Foreign Sponsors
外国赞助商阴影下的叛军联盟
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Milos Popovic
  • 通讯作者:
    Milos Popovic

Milos Popovic的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Milos Popovic', 18)}}的其他基金

ASCENT: Collaborative Research: Scaling Distributed AI Systems based on Universal Optical I/O
ASCENT:协作研究:基于通用光学 I/O 扩展分布式人工智能系统
  • 批准号:
    2023751
  • 财政年份:
    2020
  • 资助金额:
    $ 47万
  • 项目类别:
    Standard Grant
RAISE-EQuIP: Single-Chip, Wall-Plug Photon Pair Source and CMOS Quantum Systems on Chip
RAISE-EQuIP:单芯片、壁插式光子对源和 CMOS 量子片上系统
  • 批准号:
    1842692
  • 财政年份:
    2018
  • 资助金额:
    $ 47万
  • 项目类别:
    Standard Grant
OP: Collaborative Research: Coherent Integrated Si-Photonic Links
OP:协作研究:相干集成硅光子链路
  • 批准号:
    1611086
  • 财政年份:
    2016
  • 资助金额:
    $ 47万
  • 项目类别:
    Standard Grant
OP: Collaborative Research: Coherent Integrated Si-Photonic Links
OP:协作研究:相干集成硅光子链路
  • 批准号:
    1701596
  • 财政年份:
    2016
  • 资助金额:
    $ 47万
  • 项目类别:
    Standard Grant
Molding Optical Field Patterns for Highly Efficient Design of Strong-Confinement Photonic Devices
用于强约束光子器件高效设计的模塑光场图案
  • 批准号:
    1128709
  • 财政年份:
    2011
  • 资助金额:
    $ 47万
  • 项目类别:
    Standard Grant

相似国自然基金

基于FRET受体上升时间的单分子高精度测量方法研究
  • 批准号:
    22304184
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
脂质多聚复合物mRNA纳米疫苗的构筑及抗肿瘤治疗研究
  • 批准号:
    52373161
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
屏障突破型原位线粒体基因递送系统用于治疗Leber遗传性视神经病变的研究
  • 批准号:
    82304416
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
细胞硬度介导口腔鳞癌细胞与CD8+T细胞间力学对话调控免疫杀伤的机制研究
  • 批准号:
    82373255
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
乙酸钙不动杆菌上调DUOX2激活PERK/ATF4内质网应激在炎症性肠病中的作用机制研究
  • 批准号:
    82300623
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328975
  • 财政年份:
    2024
  • 资助金额:
    $ 47万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328973
  • 财政年份:
    2024
  • 资助金额:
    $ 47万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328972
  • 财政年份:
    2024
  • 资助金额:
    $ 47万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328974
  • 财政年份:
    2024
  • 资助金额:
    $ 47万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: Indium selenides based back end of line neuromorphic accelerators
合作研究:FuSe:基于硒化铟的后端神经形态加速器
  • 批准号:
    2328741
  • 财政年份:
    2023
  • 资助金额:
    $ 47万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了