RAISE-EQuIP: Single-Chip, Wall-Plug Photon Pair Source and CMOS Quantum Systems on Chip

RAISE-EQuIP:单芯片、壁插式光子对源和 CMOS 量子片上系统

基本信息

  • 批准号:
    1842692
  • 负责人:
  • 金额:
    $ 75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-10-01 至 2022-09-30
  • 项目状态:
    已结题

项目摘要

The amount of new data generated by humanity in the past year exceeds that created in all of human history before. The processing demands of this data are driving the continued need for greater computational power, in domains including big data analytics, artificial intelligence, and augmented reality, serving technologies including personal, medical, research, engineering, finance, and weather prediction. As "Moore's Law" of the semiconductor industry - which has guaranteed continued advance of computing power in the last 50 years - has ground to a halt in the past decade, new computational paradigms are being sought to remedy this dire situation. Quantum information technology is the new and ultimate frontier for signal processing and computing and leverages the unintuitive laws of our universe that hold on small scales. 50-100 qubit processors have been developed by Intel, IBM and Google, but quantum optical networks, needed to network them into "quantum data centers" in a way similar to their conventional analogues, are missing. This project aims to fill that gap by developing a new electronic-photonic chip technology and framework to allow creation of electronic-photonic quantum systems-on-chip (epQSoCs). epQSoCs combine light, electronic circuits, and quantum functions on a single microchip that can provide a widely deployable technology platform for quantum networks. The project will combine interdisciplinary expertise in photonics, electronic systems, and quantum communications to demonstrate the first epQSoC. A single-chip, "wall-plug" source of quantum correlated photon pairs, this epQSoC is a fundamental building block for more complex epQSoCs and for quantum networks. By integrating several components and novel capabilities never previously integrated in a single chip, this source will provide new levels of photon-pair source performance. The interdisciplinary project team will also educate a new generation of engineers in this emerging new technology area to foster innovation, excellence and global leadership in the United States.A "wall plug" single-chip source of photon pairs, a fundamental building block of most quantum photonic systems, will be demonstrated having a high efficiency, rate and reconfigurability to produce factorizable quantum states and allow heralding of pure single photons. No such integrated device exists despite the fact that a rack-mounted fiber-nonlinearity-based source of this kind for lab use has been commercialized for almost a decade. The proposed project aims to change the quantum technology landscape with the demonstration of a fully integrated single-chip quantum pair source system. The chip photonic circuit will contain photonic elements for pre- and post-source linear pump filtering, a resonant nonlinear pair generator, pump pulse carver to allow active matching of the pump pulse length to the source's resonant bandwidth in order to control the produced photons joint spectral intensity (to yield a factorizable or other engineered biphoton states), and an ultra-low loss interface to fiber. The proposed approach addresses a number of challenges that arise in integration, on-chip filtering, and real-time control. In addition to standalone operation, the pair source will be the first implementation of an electronic-photonic quantum system-on-chip (epQSoC) and a key building block for more complex integrated quantum systems. The proposed epQSoCs will be implemented in a commercial 45nm CMOS electronic-photonic platform (with potential for integrating single-photon detectors on chip as well). The project will create the technology framework (block libraries, tools, models and design methodologies) for low-cost, rapid innovation and design of sophisticated epQSoCs. This framework, along with associated educational materials and experiences will help create a new crop of engineers that are capable of tackling the complex, multidisciplinary nature of quantum information systems. Educational and outreach activities will provide exposure and training to a new generation of students and future leaders in this field, with special focus on underrepresented students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
过去一年,人类产生的新数据量超过了人类历史上创造的数据量。 这些数据的处理需求正在推动大数据分析、人工智能和增强现实等领域对更大计算能力的持续需求,服务于个人、医疗、研究、工程、金融和天气预报等技术。 由于半导体行业的“摩尔定律”(保证了过去 50 年计算能力的持续进步)在过去十年中陷入停滞,人们正在寻求新的计算范式来纠正这种可怕的情况。 量子信息技术是信号处理和计算的新的终极前沿,它利用了小尺度宇宙中不直观的法则。 英特尔、IBM 和谷歌已经开发了 50-100 个量子位处理器,但是缺少以类似于传统类似物的方式将它们联网到“量子数据中心”的量子光网络。 该项目旨在通过开发新的电子光子芯片技术和框架来填补这一空白,以创建电子光子量子片上系统(epQSoC)。 epQSoC 将光、电子电路和量子功能结合在单个微芯片上,可以为量子网络提供可广泛部署的技术平台。 该项目将结合光子学、电子系统和量子通信方面的跨学科专业知识,展示首款 epQSoC。 该 epQSoC 是量子相关光子对的单芯片“插墙式”源,是更复​​杂的 epQSoC 和量子网络的基本构建模块。 通过集成多个组件和以前从未集成在单个芯片中的新颖功能,该源将提供新水平的光子对源性能。 跨学科项目团队还将在这一新兴技术领域培养新一代工程师,以促进美国的创新、卓越和全球领导地位。 光子对的“墙壁插头”单芯片源,是大多数技术的基本构建模块量子光子系统将被证明具有高效率、高速率和可重构性,可产生可分解的量子态并允许纯单光子的出现。 尽管这种用于实验室的基于机架安装的光纤非线性源已经商业化了近十年,但还不存在这样的集成设备。该项目旨在通过展示完全集成的单芯片量子对源系统来改变量子技术格局。芯片光子电路将包含用于源前和后线性泵浦滤波的光子元件、谐振非线性对发生器、泵浦脉冲雕刻器,以允许泵浦脉冲长度与源谐振带宽主动匹配,以控制产生的光子接头光谱强度(以产生可分解或其他工程双光子状态),以及与光纤的超低损耗接口。所提出的方法解决了集成、片上滤波和实时控制中出现的许多挑战。除了独立运行之外,该对源还将首次实现电子-光子量子片上系统(epQSoC),并且是更复杂的集成量子系统的关键构建模块。 拟议的 epQSoC 将在商用 45nm CMOS 电子光子平台中实现(也有可能在芯片上集成单光子探测器)。该项目将创建技术框架(模块库、工具、模型和设计方法),以实现复杂 epQSoC 的低成本、快速创新和设计。该框架以及相关的教育材料和经验将有助于培养一批新的工程师,他们能够处理量子信息系统的复杂、多学科性质。教育和推广活动将为该领域的新一代学生和未来领导者提供接触和培训,特别关注代表性不足的学生。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和能力进行评估,被认为值得支持。更广泛的影响审查标准。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantum-Correlated Photon-Pair Source with Integrated Feedback Control in 45 nm CMOS
45 nm CMOS 中具有集成反馈控制的量子相关光子对源
Efficient, Narrow Profile Waveguide Crossings Based on Rapid Adiabatic Coupling
Fast-Tuning Adiabatic Microrings for CROW Filters and Athermal WDM Receivers in a 45 nm SOI CMOS Process
用于采用 45 nm SOI CMOS 工艺的 CROW 滤波器和无热 WDM 接收器的快速调谐绝热微环
  • DOI:
    10.1364/cleo_si.2022.sf4m.2
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kramnik, Danielius;Fargas Cabanillas, Josep M.;Gluhović, Ðorđe;Buchbinder, Sidney;Popović, Miloš A.;Stojanović, Vladimir
  • 通讯作者:
    Stojanović, Vladimir
Electronic-photonic quantum systems on-chip
片上电子光子量子系统
Toward quantum electronic-photonic systems-on-chip: a monolithic source of quantum-correlated photons with integrated frequency locking electronics and pump rejection
迈向量子电子光子片上系统:具有集成锁频电子和泵浦抑制的单片量子相关光子源
  • DOI:
    10.1364/cleo_si.2022.sm3n.2
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wang, I.;Cabanillas, J.M. Fargas;Kramnik, D.;Ramesh, A.;Buchbinder, S.;Kumar, P.;Stojanović, V.;Popović, M.A.
  • 通讯作者:
    Popović, M.A.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Milos Popovic其他文献

The landscape of high-affinity human antibodies against intratumoral antigens
针对肿瘤内抗原的高亲和力人类抗体的前景
  • DOI:
    10.1101/2021.02.06.430058
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    G. Rakocevic;I. Glotova;I. de Santiago;B. Ç. Toptas;Milena Popovic;Milos Popovic;D. Leone;A. Stachyra;R. Rozenfeld;Deniz Kural;D. Biasci
  • 通讯作者:
    D. Biasci
Keeping Friends Close, and Their Oil Closer: Rethinking the Role of the Shanghai Cooperation Organization in China's Strive for Energy Security in Kazakhstan
拉近朋友,拉近石油:重新思考上海合作组织在中国争取哈萨克斯坦能源安全中的作用
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Milos Popovic
  • 通讯作者:
    Milos Popovic
Fragile Proxies: Explaining Rebel Defection Against Their State Sponsors
脆弱的代理人:解释叛乱分子背叛其国家赞助者的原因
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Milos Popovic
  • 通讯作者:
    Milos Popovic
Managing Internationalized Civil Wars
管理国际化内战
  • DOI:
    10.1093/acrefore/9780190228637.013.573
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Erin K. Jenne;Milos Popovic
  • 通讯作者:
    Milos Popovic
Inter-Rebel Alliances in the Shadow of Foreign Sponsors
外国赞助商阴影下的叛军联盟
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Milos Popovic
  • 通讯作者:
    Milos Popovic

Milos Popovic的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Milos Popovic', 18)}}的其他基金

Collaborative Research: FuSe: Collaborative Optically Disaggregated Arrays of Extreme-MIMO Radio Units (CODAeMIMO)
合作研究:FuSe:Extreme-MIMO 无线电单元的协作光学分解阵列 (CODAeMIMO)
  • 批准号:
    2328946
  • 财政年份:
    2023
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
ASCENT: Collaborative Research: Scaling Distributed AI Systems based on Universal Optical I/O
ASCENT:协作研究:基于通用光学 I/O 扩展分布式人工智能系统
  • 批准号:
    2023751
  • 财政年份:
    2020
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
OP: Collaborative Research: Coherent Integrated Si-Photonic Links
OP:协作研究:相干集成硅光子链路
  • 批准号:
    1611086
  • 财政年份:
    2016
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
OP: Collaborative Research: Coherent Integrated Si-Photonic Links
OP:协作研究:相干集成硅光子链路
  • 批准号:
    1701596
  • 财政年份:
    2016
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Molding Optical Field Patterns for Highly Efficient Design of Strong-Confinement Photonic Devices
用于强约束光子器件高效设计的模塑光场图案
  • 批准号:
    1128709
  • 财政年份:
    2011
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant

相似国自然基金

热/振耦合下MicroLED巨量转移装备自稳定柔性连接机制研究
  • 批准号:
    52305597
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
融合多源多态误差传递的复杂装备公差均衡创成机理
  • 批准号:
    52305285
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
废弃混合塑料磁化裂解机理及装备开发
  • 批准号:
    52375501
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于消费级装备的不同高度单株立木实景三维建模方法
  • 批准号:
    32371867
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
高压加氢装备橡胶密封氢致空穴萌生与演化行为及爆炸减压损伤机制
  • 批准号:
    52375211
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

ExpandQISE: Track 2: EQUIP-UMB-Expand Quantum Information Programs at UMass Boston
ExpandQISE:轨道 2:EQUIP-UMB-扩展麻省大学波士顿分校的量子信息项目
  • 批准号:
    2328774
  • 财政年份:
    2023
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
Learning health systems: fostering participatory learning and action to equip rural health workers as change agents for maternal and newborn care.
学习卫生系统:促进参与式学习和行动,使农村卫生工作者成为孕产妇和新生儿护理的变革推动者。
  • 批准号:
    MR/V020951/1
  • 财政年份:
    2022
  • 资助金额:
    $ 75万
  • 项目类别:
    Research Grant
MRC Equip: A bioenergetics platform to facilitate research in metabolic pathologies
MRC Equip:促进代谢病理学研究的生物能学平台
  • 批准号:
    MR/X01214X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 75万
  • 项目类别:
    Research Grant
DIYWomen - workshops which equip and empower women with practical skills, while engaging with employers to create more diverse and inclusive engineering, construction and trades workforces.
DIYWomen - 为女性提供实用技能的研讨会,同时与雇主合作打造更加多元化和包容性的工程、建筑和贸易劳动力。
  • 批准号:
    10015882
  • 财政年份:
    2021
  • 资助金额:
    $ 75万
  • 项目类别:
    Collaborative R&D
To use insights from social science identity research to build a toolkit to equip organisations with new behaviours as they return to work post Covid-19.
利用社会科学身份研究的见解构建一个工具包,为组织在 Covid-19 后重返工作岗位时提供新的行为方式。
  • 批准号:
    79513
  • 财政年份:
    2020
  • 资助金额:
    $ 75万
  • 项目类别:
    Small Business Research Initiative
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了