Collaborative Research: FuSe: Metaoptics-Enhanced Vertical Integration for Versatile In-Sensor Machine Vision

合作研究:FuSe:Metaoptics 增强型垂直集成,实现多功能传感器内机器视觉

基本信息

  • 批准号:
    2328856
  • 负责人:
  • 金额:
    $ 49.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2026-09-30
  • 项目状态:
    未结题

项目摘要

Vision is perhaps the most important human perception, as the majority of the brain’s cognitive function is dedicated to processing visual information. Despite recent advancements, today’s vision sensors remain quite primitive when compared to the superior ability of human visual perception. Moreover, the rapid development of deep learning and artificial intelligence (AI) has unleashed a new wave of machine vision, where increasing amounts of image data are generated and consumed, not by humans, but by edge devices to perform intelligent tasks such as classification, recognition, and perception. Inspired by the biological system and motivated by the huge demand of machine vision, this project investigates an integrated and holistic approach to building versatile vision systems that can be tailored for domain-specific tasks. It aims to create a vertically-integrated design stack for vision sensors across optics, image sensors, and vision processors. The project is expected to herald a new paradigm of AI-driven vision systems and demonstrate technology to address pivotal engineering challenges from real-time visual adaptivity in self-driving cars to near-zero energy efficiency in persistent environmental monitoring. In addition, the project’s education and workforce development activities foster an open-source hardware community to boost accessibility and deepen collaboration beyond the traditional discipline divides, as well as to build up the capacity of domestic talents in vision sensor industry, critical to national security and supply chain safety. The research objective of this project is to create the scientific and engineering foundations for a novel machine vision system that explores the hybrid integration of nanophotonic metamaterials and complementary metal-oxide semiconductor (CMOS) circuits and synergistically leverages the intrinsic computing capability of computational metasurface and analog-domain encoder embedded inside the image sensors. Our principled approach to abstracting design knobs and modeling interactions and tradeoffs across the system layers and physical domains will inform future “More than Moore” multi-physics semiconductor device integration. We will delve into the key concept of optimally distributing computation along the processing pipeline with complementary intrinsic physical-domain operations. Our end-to-end design framework is deliberately created to bridge the divide between modeling/simulation infrastructure and design toolchains across multiple heterogeneous physical domains. The core principles of embedding machine-learning-enabled feature selection with optical/electrical vertical integration could have a major impact on the design of sensor-rich intelligent physical platforms where resource constraints coincide with strict latency requirements. The technology developed in this project will turbocharge AI-enabled hardware to satisfy the tremendous computational demand imposed by data proliferation, broadly benefiting a range of burgeoning industries such as machine vision as a service, smart IoT infrastructure, data-driven sensing and imaging.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
视觉可能是最重要的人类感知,因为大脑的大部分认知功能致力于处理视觉信息,尽管最近取得了进步,但与人类视觉感知的卓越能力相比,当今的视觉传感器仍然相当原始。深度学习和人工智能 (AI) 的结合掀起了机器视觉的新浪潮,越来越多的图像数据不是由人类而是由边缘设备生成和消耗,以执行分类、识别和感知等智能任务。受到生物系统的启发和动力为了满足机器视觉的巨大需求,该项目研究了一种集成的整体方法来构建可针对特定领域任务进行定制的多功能视觉系统,旨在为跨光学、图像传感器和视觉的视觉传感器创建垂直集成的设计堆栈。该项目预计将预示着人工智能驱动视觉系统的新范例,并展示解决从自动驾驶汽车的实时视觉自适应性到持续环境监测中接近零能源效率的关键工程挑战的技术。该项目的教育和劳动力发展活动培育开源硬件社区,以提高可访问性并深化超越传统学科界限的合作,并增强视觉传感器行业国内人才的能力,这对国家安全和供应链安全至关重要。该项目旨在为新型机器视觉系统奠定科学和工程基础,该系统探索纳米光子超材料和互补金属氧化物半导体(CMOS)电路的混合集成,并协同利用计算超表面和嵌入其中的模拟域编码器的固有计算能力这我们抽象设计旋钮以及建模跨系统层和物理域的交互和权衡的原则性方法将为未来的“超越摩尔”多物理场半导体器件集成提供信息,我们将深入研究沿系统优化分布计算的关键概念。我们特意创建了具有互补的内在物理域操作的处理管道,以弥合跨多个异构物理域的建模/仿真基础设施和设计工具链之间的鸿沟。具有光学/电气垂直集成的机器学习功能选择可能会对传感器丰富的智能物理平台的设计产生重大影响,在该平台中,资源限制与严格的延迟要求相一致,该项目中开发的技术将增强人工智能硬件的性能。满足数据激增带来的巨大计算需求,广泛惠及一系列新兴行业,例如机器视觉即服务、智能物联网基础设施、数据驱动的传感和成像。该奖项反映了 NSF 的法定使命,并被认为值得通过以下方式获得支持:使用基金会的评估智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yuhao Zhu其他文献

The Role of the CPU in Energy-Efficient Mobile Web Browsing
CPU 在节能移动网络浏览中的作用
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Yuhao Zhu;Matthew Halpern;V. Reddi
  • 通讯作者:
    V. Reddi
Stress state of steel plate shear walls under compression-shear combination load
压剪组合荷载作用下钢板剪力墙的应力状态
A Supply Voltage Insensitive Two-Transistor Temperature Sensor With PTAT/CTAT Outputs Based on Monolithic GaN Integrated Circuits
一种基于单片 GaN 集成电路、具有 PTAT/CTAT 输出的电源电压不敏感双晶体管温度传感器
  • DOI:
    10.1109/tpel.2023.3288937
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Ang Li;Fan Li;Kaiwen Chen;Yuhao Zhu;Weisheng Wang;I. Mitrovic;H. Wen;Wen Liu
  • 通讯作者:
    Wen Liu
Transmission in Latent Period Causes A Large Number of Infected People in the United States
潜伏期传播导致美国大量感染者
  • DOI:
    10.1101/2020.05.07.20094086
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qinghe Liu;Junkai Zhu;Zhicheng Liu;Yuhao Zhu;Liuling Zhou;Zefei Gao;Deqiang Li;Yuanbo Tang;Xiang Zhang;Junyan Yang;Qiao Wang
  • 通讯作者:
    Qiao Wang
A Systematic Design Method for Wireless Power Transfer Systems Using the High-Order Filter Theory
利用高阶滤波器理论的无线电力传输系统系统设计方法

Yuhao Zhu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yuhao Zhu', 18)}}的其他基金

Collaborative Research: CNS Core: HCC: Small: Enabling Efficient Computer Systems for Augmented and Virtual Reality: A Perception-Guided Approach
合作研究:CNS 核心:HCC:小型:为增强现实和虚拟现实启用高效计算机系统:感知引导方法
  • 批准号:
    2225860
  • 财政年份:
    2022
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Standard Grant
CAREER: Systems and Architectural Support for Accelerator-Level Parallelism
职业:加速器级并行的系统和架构支持
  • 批准号:
    2044963
  • 财政年份:
    2021
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Small: Enabling Efficient 3D Perception: An Architecture-Algorithm Co-Design Approach
协作研究:SHF:小型:实现高效的 3D 感知:架构-算法协同设计方法
  • 批准号:
    2126642
  • 财政年份:
    2021
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Standard Grant
AF: Small: Collaborative Research: Personalized Environmental Monitoring of Type 1 Diabetes (T1D): A Dynamic System Perspective
AF:小型:合作研究:1 型糖尿病 (T1D) 的个性化环境监测:动态系统视角
  • 批准号:
    1714136
  • 财政年份:
    2017
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Standard Grant

相似国自然基金

离子型稀土渗流-应力-化学耦合作用机理与溶浸开采优化研究
  • 批准号:
    52364012
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
亲环蛋白调控作物与蚜虫互作分子机制的研究
  • 批准号:
    32301770
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于金属-多酚网络衍生多相吸波体的界面调控及电磁响应机制研究
  • 批准号:
    52302362
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
职场网络闲逛行为的作用结果及其反馈效应——基于行为者和观察者视角的整合研究
  • 批准号:
    72302108
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
EIF6负调控Dicer活性促进EV71复制的分子机制研究
  • 批准号:
    32300133
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328975
  • 财政年份:
    2024
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328973
  • 财政年份:
    2024
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328972
  • 财政年份:
    2024
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328974
  • 财政年份:
    2024
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: Metaoptics-Enhanced Vertical Integration for Versatile In-Sensor Machine Vision
合作研究:FuSe:Metaoptics 增强型垂直集成,实现多功能传感器内机器视觉
  • 批准号:
    2416375
  • 财政年份:
    2023
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了