AF: Small: Collaborative Research: Personalized Environmental Monitoring of Type 1 Diabetes (T1D): A Dynamic System Perspective
AF:小型:合作研究:1 型糖尿病 (T1D) 的个性化环境监测:动态系统视角
基本信息
- 批准号:1714136
- 负责人:
- 金额:$ 15.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The progression of many chronic diseases, such as Type 1 diabetes (T1D), manifests dynamic processes that can be modified by environmental exposures. Modeling of the underlying disease progression holds critical values for better understanding of disease development, effective monitoring, and prevention. While the emerging big data studying these diseases provide great resources, current pace for translating these data into effective monitoring and intervention strategies has been slow due to the analytic challenges caused by potential multi-layer characteristics of disease progression processes, the high-dimensional exogenous factors, heterogeneous biomarker signals, and the complexity of continuous-time stochastic processes. To mitigate these challenges with the development of new models and computational algorithms, this research will provide the desired personalized monitoring and risk factor identification capability, which is crucial not only for increasing the situational awareness of the individuals who are at risk, but also for providing evidences for design, validation, and deployment of intervention strategies. Its generic nature will also help effective monitoring of many other dynamic systems in engineering and life sciences. The interdisciplinary nature of this research across data-driven risk monitoring, dynamic systems, high-dimensional variable selection, and healthcare, will prepare students with a diversified education background. The objective of this project is to create a generic suite of computational approaches that can be applied for modeling, learning, and monitoring a set of dynamic diseases, whose progression processes may be modified by exogenous factors such as environmental exposures. Several methodological contributions are expected, including: (1) a novel rule-based monitoring methodology to convert high-dimensional complex biomarkers into disease risk evaluation, via the development of an efficient screening method for high-throughput rule discovery and an optimal design method for risk monitoring; (2) a multi-layer dynamic model that can investigate how the exogenous risk factors regulate the disease process, with integration of sparse multi-task learning to mitigate the high-dimensionality of exogenous factors; and (3) a high-dimensional robust risk factor identification framework that can identify exogenous factors with integration of knowledge learned from historical data, new measurements, and clinician's prognostics. These proposed methods will be evaluated with a practical example studying T1D in partnership with The Environmental Determinant of Diabetes in the Young (TEDDY) study.
许多慢性疾病的进展,例如 1 型糖尿病 (T1D),表现出动态过程,可以通过环境暴露来改变。潜在疾病进展的建模对于更好地了解疾病发展、有效监测和预防具有重要价值。虽然研究这些疾病的新兴大数据提供了巨大的资源,但由于疾病进展过程的潜在多层特征、高维外源因素带来的分析挑战,目前将这些数据转化为有效监测和干预策略的步伐一直缓慢。 、异质生物标志物信号以及连续时间随机过程的复杂性。为了通过新模型和计算算法的开发来缓解这些挑战,这项研究将提供所需的个性化监测和风险因素识别能力,这不仅对于提高处于危险中的个人的态势感知能力至关重要,而且对于提供干预策略的设计、验证和部署的证据。其通用性也将有助于有效监控工程和生命科学中的许多其他动态系统。这项研究的跨学科性质涵盖数据驱动的风险监测、动态系统、高维变量选择和医疗保健,将为学生提供多元化的教育背景。该项目的目标是创建一套通用的计算方法,可用于建模、学习和监测一组动态疾病,这些疾病的进展过程可能会受到环境暴露等外源因素的影响。预计将做出一些方法学贡献,包括:(1)一种新颖的基于规则的监测方法,通过开发用于高通量规则发现的有效筛选方法和用于将高维复杂生物标志物转化为疾病风险评估的最佳设计方法。风险监控; (2)多层动态模型,可以研究外源性危险因素如何调节疾病过程,并结合稀疏多任务学习来减轻外源性因素的高维性; (3) 一个高维稳健的风险因素识别框架,可以通过整合从历史数据、新测量和临床医生的预后中学到的知识来识别外源因素。这些提出的方法将通过与青少年糖尿病环境决定因素 (TEDDY) 研究合作研究 T1D 的实际例子进行评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yuhao Zhu其他文献
The Role of the CPU in Energy-Efficient Mobile Web Browsing
CPU 在节能移动网络浏览中的作用
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:3.6
- 作者:
Yuhao Zhu;Matthew Halpern;V. Reddi - 通讯作者:
V. Reddi
Stress state of steel plate shear walls under compression-shear combination load
压剪组合荷载作用下钢板剪力墙的应力状态
- DOI:
10.1002/tal.1450 - 发表时间:
2018 - 期刊:
- 影响因子:2.4
- 作者:
Yang Lv;Di Wu;Yuhao Zhu;Xiao Liang;Yanchao Shi;Zhen Yang;Zhong-Xian Li - 通讯作者:
Zhong-Xian Li
Transmission in Latent Period Causes A Large Number of Infected People in the United States
潜伏期传播导致美国大量感染者
- DOI:
10.1101/2020.05.07.20094086 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Qinghe Liu;Junkai Zhu;Zhicheng Liu;Yuhao Zhu;Liuling Zhou;Zefei Gao;Deqiang Li;Yuanbo Tang;Xiang Zhang;Junyan Yang;Qiao Wang - 通讯作者:
Qiao Wang
A Supply Voltage Insensitive Two-Transistor Temperature Sensor With PTAT/CTAT Outputs Based on Monolithic GaN Integrated Circuits
一种基于单片 GaN 集成电路、具有 PTAT/CTAT 输出的电源电压不敏感双晶体管温度传感器
- DOI:
10.1109/tpel.2023.3288937 - 发表时间:
2023 - 期刊:
- 影响因子:6.7
- 作者:
Ang Li;Fan Li;Kaiwen Chen;Yuhao Zhu;Weisheng Wang;I. Mitrovic;H. Wen;Wen Liu - 通讯作者:
Wen Liu
A Systematic Design Method for Wireless Power Transfer Systems Using the High-Order Filter Theory
利用高阶滤波器理论的无线电力传输系统系统设计方法
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:4.3
- 作者:
Cheng Peng;Zhizhan Chen;Xin Xu;Jinsheng Dong;Yuhao Zhu;Yang Yu - 通讯作者:
Yang Yu
Yuhao Zhu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yuhao Zhu', 18)}}的其他基金
Collaborative Research: FuSe: Metaoptics-Enhanced Vertical Integration for Versatile In-Sensor Machine Vision
合作研究:FuSe:Metaoptics 增强型垂直集成,实现多功能传感器内机器视觉
- 批准号:
2328856 - 财政年份:2023
- 资助金额:
$ 15.8万 - 项目类别:
Continuing Grant
Collaborative Research: CNS Core: HCC: Small: Enabling Efficient Computer Systems for Augmented and Virtual Reality: A Perception-Guided Approach
合作研究:CNS 核心:HCC:小型:为增强现实和虚拟现实启用高效计算机系统:感知引导方法
- 批准号:
2225860 - 财政年份:2022
- 资助金额:
$ 15.8万 - 项目类别:
Standard Grant
CAREER: Systems and Architectural Support for Accelerator-Level Parallelism
职业:加速器级并行的系统和架构支持
- 批准号:
2044963 - 财政年份:2021
- 资助金额:
$ 15.8万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Small: Enabling Efficient 3D Perception: An Architecture-Algorithm Co-Design Approach
协作研究:SHF:小型:实现高效的 3D 感知:架构-算法协同设计方法
- 批准号:
2126642 - 财政年份:2021
- 资助金额:
$ 15.8万 - 项目类别:
Standard Grant
相似国自然基金
单细胞分辨率下的石杉碱甲介导小胶质细胞极化表型抗缺血性脑卒中的机制研究
- 批准号:82304883
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
小分子无半胱氨酸蛋白调控生防真菌杀虫活性的作用与机理
- 批准号:32372613
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
诊疗一体化PS-Hc@MB协同训练介导脑小血管病康复的作用及机制研究
- 批准号:82372561
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
非小细胞肺癌MECOM/HBB通路介导血红素代谢异常并抑制肿瘤起始细胞铁死亡的机制研究
- 批准号:82373082
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
FATP2/HILPDA/SLC7A11轴介导肿瘤相关中性粒细胞脂代谢重编程影响非小细胞肺癌放疗免疫的作用和机制研究
- 批准号:82373304
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
- 批准号:
2342244 - 财政年份:2024
- 资助金额:
$ 15.8万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Exploring the Frontiers of Adversarial Robustness
合作研究:AF:小型:探索对抗鲁棒性的前沿
- 批准号:
2335411 - 财政年份:2024
- 资助金额:
$ 15.8万 - 项目类别:
Standard Grant
NSF-BSF: Collaborative Research: AF: Small: Algorithmic Performance through History Independence
NSF-BSF:协作研究:AF:小型:通过历史独立性实现算法性能
- 批准号:
2420942 - 财政年份:2024
- 资助金额:
$ 15.8万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Structural Graph Algorithms via General Frameworks
合作研究:AF:小型:通过通用框架的结构图算法
- 批准号:
2347322 - 财政年份:2024
- 资助金额:
$ 15.8万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Real Solutions of Polynomial Systems
合作研究:AF:小:多项式系统的实数解
- 批准号:
2331401 - 财政年份:2024
- 资助金额:
$ 15.8万 - 项目类别:
Standard Grant