FMRG: Bio: Manufacturing Ultra-High-Density DNA-Enabled Nanoelectronics Systems
FMRG:生物:制造超高密度 DNA 纳米电子系统
基本信息
- 批准号:2328217
- 负责人:
- 金额:$ 300万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The ability to design, manufacture, and integrate semiconductor-based devices led to the Information Technology revolution. Key to this advance was the decrease in the size of transistors from the micron-scale to the nanometer-scale. However, physical limitations within the manufacturing process are now limiting further decreases in size and hence the density of electronic devices. Alternatively, it has long been imagined that molecular-scale components could play a role in electronic systems as they naturally reside at nanometer-scales and can be synthesized to perform an array of interesting functions from rectification and amplification to sensing and light emission. However, robust, high-yield integration of nanoscale components such as graphene nanoribbons, carbon nanotubes, nanoparticles, or single-molecules with conventional electronic circuits has proven to be challenging. Toward this end, this project aims to catalyze the long-term expansion of manufacturable DNA-based electronics by leveraging advances in DNA nanotechnology, synthetic biology, and nanoscale electronics. Toward this vision, this project focuses on designing and manufacturing a plug-and-play DNA nano-cartridge from the bottom-up that can be integrated with conventional, top-down electronic circuits to create ultra-high density systems. The nano-cartridge platform will enable a myriad of potential applications, and as an initial target the project will focus on manufacturing a novel class of inexpensive electronic biosensors capable of rapid, simultaneous detection of hundreds of unique biomolecules (e.g., DNA or RNA). Immediate applications for these sensors range from monitoring the supply chain in the agricultural industry to pathogen detection and disease tracking. In addition, this project, which includes two HSIs, aims to help prepare a workforce inclusive of diverse backgrounds (K-12, community colleges, four-year colleges and research universities) to work in this nascent field. The research goals and workforce development plan are integrated with an outreach effort aimed at expanding the enrollment of under-represented groups in STEM fields, providing teacher training and research experiences to undergraduate students, and introducing K-12 students to cutting-edge science and engineering. This project presents an interdisciplinary approach to developing a foundation for manufacturing ultra-high density, carbon-based electronics. To enable this capability, the research team will work to catalyze a manufacturing pipeline that leverages DNA nanotechnology to address critical roadblocks to the wide-spread use of these systems. To advance this pipeline, this project focuses on developing: (i) scalable, high-purity methods for obtaining chiral-specific carbon nanotubes, self-aligned single-molecule junctions, and hierarchically assembled hybrid DNA nanostructures; (ii) reliable methodologies for integrating bottom-up and top-down architectures utilizing a combination of field-driven, directed-assembly and microarray liquid dispensing processes; (iii) computer aided design (CAD) and design for manufacturing (DFM) tools for designing and modeling the electronic properties of DNA nanostructures, carbon nanotubes, their interconnects, and their assembly processes; and (iv) a framework that will allow a workforce to be trained with a sufficient background in synthetic biology, DNA nanotechnology, nanoscale electronics, and manufacturing to help move this field from a leading-edge research platform to a foundational manufacturing platform in the United States.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
设计,制造和集成基于半导体的设备的能力导致了信息技术革命。这一进步的关键是从微米尺度到纳米尺度的晶体管大小的减小。但是,制造过程中的物理局限性现在限制了大小的进一步降低,因此电子设备的密度。另外,长期以来,人们一直认为分子尺度的组件自然驻留在纳米尺度上,可以在电子系统中发挥作用,并且可以合成以执行从整流和放大到感应和光发射的有趣功能。然而,纳米级成分(例如石墨烯纳米纤维,碳纳米管,纳米颗粒或带有常规电子电路的单分子)等纳米级成分的稳健,高收益整合已被证明具有挑战性。为此,该项目旨在通过利用DNA纳米技术,合成生物学和纳米级电子的进步来促进可制造的基于DNA的电子产品的长期扩展。为了实现这一愿景,该项目着重于设计和制造自下而上的插件DNA纳米式毛衣,这些DNA纳米式荷兰可以与传统的自上而下的电子电路集成在一起,以创建超高密度系统。纳米 - 拼写平台将实现无数的潜在应用,作为初始目标,该项目将着重于制造一类新型的廉价电子生物传感器,能够快速,同时检测数百种独特的生物分子(例如DNA或RNA)。这些传感器的直接应用范围从监测农业的供应链到病原体检测和疾病跟踪。此外,该项目包括两个HSIS,旨在帮助准备包括不同背景的劳动力(K-12,社区学院,四年制学院和研究所),以在这个新生的领域工作。研究目标和劳动力发展计划与旨在扩大STEM领域中代表性不足的群体的入学率一起进行了宣传,从而为本科生提供教师培训和研究经验,并向K-12学生介绍切削边缘科学和工程学。该项目提出了一种跨学科的方法,用于为制造超高密度(基于碳的电子产品)开发基础。为了实现这一能力,研究团队将致力于催化一条制造管道,该管道利用DNA纳米技术来解决关键的障碍,以广泛使用这些系统。为了促进该管道,该项目的重点是开发:(i)可扩展的高纯度方法,用于获得手性特异性的碳纳米管,自对齐的单分子连接和层次组装的混合DNA纳米结构; (ii)利用场驱动的,定向组装和微阵列液体分配过程的组合来整合自下而上和自上而下的架构的可靠方法; (iii)用于设计和建模DNA纳米结构,碳纳米管,它们的互连及其组装过程的电子特性的计算机辅助设计(CAD)和设计(DFM)工具; (iv)一个将允许劳动力在合成生物学,DNA纳米技术,纳米级电子和制造业方面具有足够背景的培训的框架,以帮助将该领域从领先的研究平台转移到美国的基础制造平台上,在美国的基础制造平台。 标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joshua Hihath其他文献
Nongjian Tao (1963–2020)
陶农建 (1963–2020)
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:38.3
- 作者:
Joshua Hihath;S. Lindsay - 通讯作者:
S. Lindsay
Échafaudages auto-assemblés de protéines bêta-solénoïdes
β-solénoïdes 蛋白质的自动组装
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Daniel J. Cox;Gang Liu;Michael D. Toney;Xi Chen;Joshua Hihath;G. Zimanyi;Natha Robert Hayre;Marie Christine Scholler de Peralta - 通讯作者:
Marie Christine Scholler de Peralta
Joshua Hihath的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joshua Hihath', 18)}}的其他基金
GCR: Rational Design of Topological Insulators using Atomically-Precise DNA Self-Assembly
GCR:利用原子精确的 DNA 自组装技术合理设计拓扑绝缘体
- 批准号:
2317843 - 财政年份:2023
- 资助金额:
$ 300万 - 项目类别:
Continuing Grant
Combined Single-Molecule Raman and Conductance Spectroscopies for Understanding Electric Field-Controlled Chemistry
结合单分子拉曼光谱和电导光谱来了解电场控制化学
- 批准号:
2204223 - 财政年份:2022
- 资助金额:
$ 300万 - 项目类别:
Continuing Grant
Combined Single-Molecule Raman and Conductance Spectroscopies for Understanding Electric Field-Controlled Chemistry
结合单分子拉曼光谱和电导光谱来了解电场控制化学
- 批准号:
2239226 - 财政年份:2022
- 资助金额:
$ 300万 - 项目类别:
Continuing Grant
FMSG: DNA-based Assembly of Manufacturable NanoElectronic Device
FMSG:基于 DNA 的可制造纳米电子器件组装
- 批准号:
2036865 - 财政年份:2020
- 资助金额:
$ 300万 - 项目类别:
Standard Grant
SemiSynBio: Collaborative Research: DNA-based Electrically Readable Memories
SemiSynBio:合作研究:基于 DNA 的电可读存储器
- 批准号:
1807555 - 财政年份:2018
- 资助金额:
$ 300万 - 项目类别:
Continuing Grant
Controlling Thermal Transport in Hybrid, 2D, Thermoelectric Devices from the Bottom-Up
自下而上控制混合二维热电器件中的热传输
- 批准号:
1605338 - 财政年份:2016
- 资助金额:
$ 300万 - 项目类别:
Standard Grant
Piezoresistive Effects in Single Molecule Devices
单分子器件中的压阻效应
- 批准号:
1231915 - 财政年份:2012
- 资助金额:
$ 300万 - 项目类别:
Continuing Grant
相似国自然基金
mRNA反式调控基因转录的机制及其生物学功能
- 批准号:32330018
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
海洋微生物CRISPR单碱基分辨机制研究
- 批准号:42376184
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
大气生物源有机硝酸酯的合成、定量和其在中国南方城市的成因研究
- 批准号:22306059
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
城市污水厂生物除臭系统生物膜微界面微生物逸散行为及机制
- 批准号:52370026
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
增材制造锌镁合金复合椎间融合器降解调控机制与生物学效应研究
- 批准号:52301302
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
相似海外基金
OpenBioMAPS: shared tools for accelerating UK bio-manufacturing
OpenBioMAPS:加速英国生物制造的共享工具
- 批准号:
BB/Y007808/1 - 财政年份:2024
- 资助金额:
$ 300万 - 项目类别:
Research Grant
FMSG: Bio: Interface-Directed Manufacturing of Piezoelectric Biocrystal Thin Films
FMSG:生物:压电生物晶体薄膜的界面导向制造
- 批准号:
2328250 - 财政年份:2024
- 资助金额:
$ 300万 - 项目类别:
Standard Grant
Advanced manufacturing of self-sensing bio-based membranes for environmental detoxification and revalorization
用于环境解毒和再增值的自感知生物基膜的先进制造
- 批准号:
EP/Z000300/1 - 财政年份:2024
- 资助金额:
$ 300万 - 项目类别:
Research Grant
FMSG: Cyber: Toward Future Underwater Additive Manufacturing of Bio-Based Construction Materials Through AI-Guided Sensing and Material Modeling
FMSG:网络:通过人工智能引导的传感和材料建模迈向未来生物基建筑材料的水下增材制造
- 批准号:
2328188 - 财政年份:2024
- 资助金额:
$ 300万 - 项目类别:
Standard Grant
FMSG: Bio: RAMP-Bio-CAFe: Routing Advanced Manufacturing of BioPolymer(s): Capturing Agri-feedstocks in Cell free Factories
FMSG:生物:RAMP-Bio-CAFe:生物聚合物的先进制造路线:在无细胞工厂中捕获农业原料
- 批准号:
2328291 - 财政年份:2023
- 资助金额:
$ 300万 - 项目类别:
Standard Grant