Equipment: MRI: Track #1 Acquisition of Photonic Wirebonding Tool for Quantum and Nanophotonics

设备: MRI:轨道

基本信息

  • 批准号:
    2320265
  • 负责人:
  • 金额:
    $ 99.94万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

Photons, particles of light, can travel across long distances with very high efficiency, especially when propagating in very low loss fiber-optical cables. Therefore, photons are used as information carriers of choice for optical communication technology that forms the backbone of the internet. Integrated photonic chips - integrated photonics for short - consisting of many micron-scale optical devices, have emerged as an essential technology required to encode information in a photon’s color, polarization, shape, and position. Beyond optical communications, integrated photonics has enabled a wide range of applications with significant societal impact, including environmental monitoring, bio-medical imaging, machine vision, and high-performance computing. These applications crucially rely on the ability to efficiently interface “micro-world” of integrated photonic chips with “macro-world” of optical fibers. In the laboratory setting, this is achieved using bulky, expensive, and high-precision positioners, which renders the system challenging to use in real-world applications. Photonic wire bonding (PWB), the process of permanently attaching an optical fiber to a photonic chip, is ideally suited to overcome this limitation and improve the performance and usability of the integrated photonics. Furthermore, it can also make these systems accessible to many under-resourced communities (e.g. small colleges, high schools) who may not have access to state of the art laboratory equipment. This Major Research Instrumentation (MRI) award is supporting the acquisition of a PWB system by Vanguard Automation. The tool will be placed in a shared clean room facility - Center for Nanoscale Systems at Harvard, member of NNCI network - where it will be available to many academic and industrial users. Therefore, the tool will enable many scientific breakthroughs, stimulate technological advancements and entrepreneurship, and help train a diverse and photonic-savvy workforce. Modern chip-scale photonic systems consist of many optical devices, including waveguides, resonators, modulators, switches, lasers and detectors, realized in a variety of photonic materials and has enabled applications ranging from optical communications and computation on one end, to sensing and precision measurement on the other. The outstanding challenge for integrated photonics is that of efficiently getting light on- and off-chip. Due to the large optical mode mismatch between sub-micron scale on-chip optical waveguides and commercially available optical fibers, featuring optical mode diameters exceeding ten microns, much of the light is lost when light passes from the waveguide to the fiber. This is particularly true for applications that require low temperature operation (e.g. inside cryostat or dilution refrigerator), operation in fluids (e.g. in sensors), scalability (e.g. 10s or 100s devices to be connected at the same time), or robustness to vibrations. Recently, photonic wire bonding, an optical equivalent to electrical wire bonding ubiquitous in electrical circuits, has emerged as a promising technique to create efficient and permanent connections between photonic devices on different platforms, or with fibers or lasers. In this approach, 3-D polymer waveguides are fabricated in situ to bridge the gap between photonic circuits located on different chips, or between the chip and fiber or laser. This technique not only enables scalable, highly efficient, and low loss interface between optical chips and optical fibers, but also allows for the realization of compact hybrid devices that combine different materials. The PWB tool will facilitate successful completion of a large number of ongoing research programs focused on development of new types of chip-scale lasers (including pulsed ones), frequency combs and single-photon sources, for example, and their application in microwave photonics, optical communication and computing, precision measurements of time and distance, environmental monitoring, quantum communication and computation. The tool will also enable new opportunities by the ability to perform long term, stable measurements.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
光子(光线颗粒)可以以非常高的效率在长距离上行驶,尤其是在非常低损耗的纤维光线电缆中传播时。因此,照片被用作构成Internet骨干的光学通信技术首选信息载体。集成的光子芯片 - 简短的集成光子学 - 由许多微米级的光学设备组成,已成为用光子的颜色,偏振,形状和位置编码信息所需的必需技术。除了光学通信之外,集成的Photosnics还使广泛的应用程序具有重大的社会影响,包括环境监测,生物医学成像,机器视觉和高性能计算。这些应用程序始终依赖于具有光纤的“宏世界”的集成光子芯片的“微世界”的能力。在实验室环境中,这是使用笨重,昂贵且高精度的定位者实现的,这使系统挑战挑战在现实世界应用程序中。光子线键合(PWB)是将光纤永久连接到光子芯片的过程,非常适合克服这一限制并提高集成光子学的性能和可用性。此外,它还可以使许多资源不足的社区(例如小型大学,高中)可以使用这些系统,这些社区可能无法进入最先进的实验室设备。这项主要的研究工具(MRI)奖是通过Vanguard Automation支持对PWB系统的收购。该工具将放置在NNCI Network成员的哈佛大学纳米级系统中心共享的清洁室设施中 - 许多学术和工业用户都可以使用。因此,该工具将使许多科学突破,刺激技术进步和企业家精神,并帮助培训多样性和精通光子的劳动力。现代芯片尺度光子系统由许多光学设备组成,包括波导,谐振器,调节器,开关,激光器和探测器,在各种光子材料中实现,并实现了从一个末端的光学通信和计算,到另一端的敏感性和精确测量。集成光子学的杰出挑战是有效地在片上和片上获得光线。由于片上光学波导和市售光纤之间的较大的光学模式不匹配,具有超过10微米的光学模式直径,因此当光导向从波导到纤维时,大部分光线都会丢失。对于需要低温操作(例如内部低温或稀释冰箱),流体(例如,在传感器中),可伸缩性(例如10s或100s设备可以同时连接的100s设备)的应用,尤其如此。最近,光电线键合(一种相当于电路中电线粘结无处不在的光学键)已成为一种有前途的技术,可以在不同平台上或使用纤维或激光器上建立有效且永久的连接。在这种方法中,原位制造了3-D聚合物波导,以弥合位于不同芯片上或芯片和纤维或激光之间的光子电路之间的间隙。该技术不仅可以在光学芯片和光纤之间实现可扩展,高效且低损耗的接口,而且还可以实现结合不同材料的紧凑型混合设备。 PWB工具将有助于成功完成大量正在进行的研究计划,重点是开发新型的芯片尺度激光器(包括脉冲的激光器),频率梳子和单光源来源,例如,它们在微波光照射中的应用,光学传播,光学通信和计算,时间和远距离,环境,环境监视和计算的精确测量。该工具还将通过长期执行稳定测量的能力来实现新的机会。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响评估标准,被视为通过评估而被视为珍贵的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marko Loncar其他文献

部分スロットナノビーム光機械振動子の追究
部分开槽纳米束光机械振荡器的研究
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    北 翔太;Mike Burek;Daquan Yang;Marko Loncar
  • 通讯作者:
    Marko Loncar
高機械Q値のための音叉型ナノビーム振動子の提案
高机械Q值音叉型纳米束振荡器的提案
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    北 翔太;Marko Loncar
  • 通讯作者:
    Marko Loncar
Nano-scale optical and quantum optical devices based on photonic crystals
基于光子晶体的纳米级光学和量子光学器件
Optical characterization of high quality two dimensional photonic crystal cavities
高质量二维光子晶体腔的光学表征
  • DOI:
    10.1109/qels.2002.1031116
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Yoshie;Jelena Vuckovic;Marko Loncar;Axel Scherer;Hao Chen;D. Deppe
  • 通讯作者:
    D. Deppe
High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing
高灵敏度和高 Q 因子纳米槽平行四光束光子晶体腔,用于实时、无标记传感
  • DOI:
    10.1063/1.4867254
  • 发表时间:
    2014-08
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Daquan Yang;Shota Kita;Feng Liang;Cheng Wang;Huiping Tian;Yuefeng Ji;Marko Loncar;Qimin Quan
  • 通讯作者:
    Qimin Quan

Marko Loncar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marko Loncar', 18)}}的其他基金

QuIC-TAQS: Integrated Lithium Niobate Quantum Photonics Platform
QuIC-TAQS:集成铌酸锂量子光子平台
  • 批准号:
    2137723
  • 财政年份:
    2021
  • 资助金额:
    $ 99.94万
  • 项目类别:
    Continuing Grant
GOALI: Nano-Machining of Diamond Mirror for High-Power Laser Optics
GOALI:高功率激光光学器件金刚石镜的纳米加工
  • 批准号:
    1825257
  • 财政年份:
    2019
  • 资助金额:
    $ 99.94万
  • 项目类别:
    Standard Grant
Convergence Accelerator Phase I: Project Scoping Workshop (PSW) on Quantum Interconnects (QuIC)
融合加速器第一阶段:量子互连 (QuIC) 项目范围界定研讨会 (PSW)
  • 批准号:
    1946564
  • 财政年份:
    2019
  • 资助金额:
    $ 99.94万
  • 项目类别:
    Standard Grant
CQIS: Coherent Spin-Phonon Interfaces with Diamond Color Centers
CQIS:与钻石色心的相干自旋声子界面
  • 批准号:
    1810233
  • 财政年份:
    2018
  • 资助金额:
    $ 99.94万
  • 项目类别:
    Standard Grant
PFI-TT:Development of an efficient fiber interface for Integrated lithium-niobate Modulators.
PFI-TT:开发用于集成铌酸锂调制器的高效光纤接口。
  • 批准号:
    1827720
  • 财政年份:
    2018
  • 资助金额:
    $ 99.94万
  • 项目类别:
    Standard Grant
RAISE-TAQS: Towards a Quantum Cloud
RAISE-TAQS:迈向量子云
  • 批准号:
    1839197
  • 财政年份:
    2018
  • 资助金额:
    $ 99.94万
  • 项目类别:
    Standard Grant
E2CDA: Type II: Collaborative Research: Nanophotonic Lithium Niobate platform for next generation energy efficient and ultrahigh bandwidth optical interconnect
E2CDA:II 类:合作研究:用于下一代节能和超高带宽光学互连的纳米光子铌酸锂平台
  • 批准号:
    1740296
  • 财政年份:
    2017
  • 资助金额:
    $ 99.94万
  • 项目类别:
    Continuing Grant
OP Collaborative Research: Taking lithium-niobate to the nanoscale: shaping revolutionary material onto photonic microchips for developing next-generation light sources
OP 合作研究:将铌酸锂提升到纳米级:将革命性材料塑造到光子微芯片上,用于开发下一代光源
  • 批准号:
    1609549
  • 财政年份:
    2016
  • 资助金额:
    $ 99.94万
  • 项目类别:
    Standard Grant
GOALI: Stable Nanomechanical Oscillators with Large f*Q Product
GOALI:具有大 f*Q 产品的稳定纳米机械振荡器
  • 批准号:
    1507508
  • 财政年份:
    2015
  • 资助金额:
    $ 99.94万
  • 项目类别:
    Standard Grant
MRI: Acquisition of True 3D Laser Lithography System with Sub-Micrometer Resolution
MRI:获得亚微米分辨率的真正 3D 激光光刻系统
  • 批准号:
    1428694
  • 财政年份:
    2014
  • 资助金额:
    $ 99.94万
  • 项目类别:
    Standard Grant

相似国自然基金

基于脑-脊髓-视神经MRI影像特征的神经免疫疾病影像亚型及其分子生物学机制的多组学研究
  • 批准号:
    82330057
  • 批准年份:
    2023
  • 资助金额:
    220 万元
  • 项目类别:
    重点项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
  • 批准号:
    82302160
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
间质性肺疾病致肺气体交换功能改变的超极化129Xe MRI定量研究
  • 批准号:
    82372150
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
氧敏感MRI分子成像评价HIF1α-VEGF信号通路诱导糖尿病心肌缺氧损伤及微循环障碍的机制研究
  • 批准号:
    82371925
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
基于5.0T超高场MRI的糖尿病肾病葡萄糖代谢的GlucoCEST定量研究
  • 批准号:
    82302141
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Equipment: MRI: Track 2 Acquisition of a Novel Performance-Driven 3D Imaging System for Extremely Noisy Objects (NPIX)
设备: MRI:第 2 道采购新型性能驱动的 3D 成像系统,用于极噪物体 (NPIX)
  • 批准号:
    2319708
  • 财政年份:
    2023
  • 资助金额:
    $ 99.94万
  • 项目类别:
    Continuing Grant
Equipment: MRI Track 1: Acquisition of Flow Cytometer
设备:MRI 轨道 1:流式细胞仪的购置
  • 批准号:
    2320130
  • 财政年份:
    2023
  • 资助金额:
    $ 99.94万
  • 项目类别:
    Standard Grant
Equipment: MRI: Track 2 Acquisition of a Hydraulic and Sediment Recirculation Flume to Advance Fundamental Research in Urban Stormwater and Fluvial Processes
设备: MRI:轨道 2 获取水力和沉积物再循环水槽,以推进城市雨水和河流过程的基础研究
  • 批准号:
    2320356
  • 财政年份:
    2023
  • 资助金额:
    $ 99.94万
  • 项目类别:
    Standard Grant
Collaborative Research: Equipment: MRI Consortium: Track 2 Development of a Next Generation Fast Neutron Detector
合作研究:设备:MRI 联盟:下一代快中子探测器的 Track 2 开发
  • 批准号:
    2320407
  • 财政年份:
    2023
  • 资助金额:
    $ 99.94万
  • 项目类别:
    Standard Grant
Collaborative Research: Equipment: MRI Consortium: Track 2 Development of a Next Generation Fast Neutron Detector
合作研究:设备:MRI 联盟:下一代快中子探测器的 Track 2 开发
  • 批准号:
    2320405
  • 财政年份:
    2023
  • 资助金额:
    $ 99.94万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了