GOALI: Nano-Machining of Diamond Mirror for High-Power Laser Optics

GOALI:高功率激光光学器件金刚石镜的纳米加工

基本信息

  • 批准号:
    1825257
  • 负责人:
  • 金额:
    $ 36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-03-15 至 2022-02-28
  • 项目状态:
    已结题

项目摘要

While breakthroughs in microfabrication have already allowed for billions of transistors to be integrated on a single integrated circuit, demands for even more computational power require denser chips and smaller transistors. Extreme ultraviolet lithography has emerged as a leading technique that can enable this. However, its performance is limited by the amount of ultraviolet light that can be produced. Optical mirrors used in these systems cannot withstand extremely high optical intensities and often fail, thus limiting the reliability of the system and increasing the production cost. This Grant Opportunity for Academic Liaison with Industry (GOALI) award addresses the need for better mirrors and develops a novel nanomanufacturing technique that allows for optical components to be fabricated in diamond. This is challenging since diamond is one of the hardest materials to shape. The team leverages expertise in material science, nano-machining, optics, and laser physics to overcome these challenges and develop a novel and scalable nanomanufacturing technique. This project has the potential to transform the way chips are made, which has great economic and societal impact owing to the ubiquitous presence of micro-chips in everyday life. In addition to the semiconductor industry, nano-machined diamond components have broad and direct impact on many technologies that use high power lasers, including defense, medicine, and automotive industry. The team's findings are shared with the general public through continued collaborations with Museum of Science (Boston), giving public lectures, and participating in science fairs. In extreme ultraviolet source a high-power carbon-dioxide laser is focused onto micron-scale tin droplets, thus vaporizing them and resulting in plasma that gives off extreme ultraviolet light. Despite many decades of work, the overall conversion efficiency (infrared to ultraviolet) is only a few percent. As a result, kilowatts of infrared power are required, which demands better mirrors, since currently used ones often fail at high optical intensities. This project develops a novel nano-machining technique for forming three-dimensional nanostructures on the surface of bulk diamond surfaces, that feature 99% reflectivity. Such diamond mirrors can handle much larger optical intensities and have much longer lifetime than state-of-the-art mirrors. In addition, the team develops a wide range of high-power diamond-based optical components, including filters, polarizers, wave-plates, and beam combiners. This collaborative effort focuses on fundamental understanding of nano-machining of optical surfaces from bulk materials and industry-university relationship through interactive research and exchange of students and engineers. The industrial partner helps provide the necessary equipment, metrology and laser expertise to advance this research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
虽然微加工技术的突破已经允许将数十亿个晶体管集成在单个集成电路上,但对更高计算能力的需求需要更密集的芯片和更小的晶体管。极紫外光刻已成为实现这一目标的领先技术。然而,其性能受到可产生的紫外线量的限制。这些系统中使用的光学镜不能承受极高的光强度并且经常发生故障,从而限制了系统的可靠性并增加了生产成本。该学术与工业联络机会 (GOALI) 奖项满足了对更好镜子的需求,并开发了一种新颖的纳米制造技术,允许用金刚石制造光学元件。这是具有挑战性的,因为金刚石是最难成型的材料之一。该团队利用材料科学、纳米加工、光学和激光物理学方面的专业知识来克服这些挑战,并开发出一种新颖且可扩展的纳米制造技术。该项目有可能改变芯片的制造方式,由于微芯片在日常生活中无处不在,因此具有巨大的经济和社会影响。除了半导体行业之外,纳米加工金刚石部件对许多使用高功率激光器的技术也具有广泛而直接的影响,包括国防、医药和汽车行业。该团队通过与科学博物馆(波士顿)的持续合作、举办公开讲座和参加科学博览会,与公众分享研究结果。在极紫外光源中,高功率二氧化碳激光聚焦在微米级的锡滴上,从而将它们蒸发并产生发出极紫外光的等离子体。尽管经过数十年的努力,总体转换效率(红外线到紫外线)仅为百分之几。因此,需要数千瓦的红外功率,这就需要更好的反射镜,因为目前使用的反射镜经常在高光强度下失效。该项目开发了一种新颖的纳米加工技术,用于在块状金刚石表面上形成三维纳米结构,其反射率高达 99%。与最先进的镜子相比,这种金刚石镜子可以处理更大的光学强度,并且具有更长的使用寿命。此外,该团队还开发了各种高功率金刚石光学元件,包括滤光片、偏振器、波片和光束组合器。这项合作的重点是通过学生和工程师的互动研究和交流,对大块材料光学表面纳米加工以及产学关系的基本理解。工业合作伙伴帮助提供必要的设备、计量和激光专业知识来推进这项研究。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marko Loncar其他文献

部分スロットナノビーム光機械振動子の追究
部分开槽纳米束光机械振荡器的研究
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    北 翔太;Mike Burek;Daquan Yang;Marko Loncar
  • 通讯作者:
    Marko Loncar
高機械Q値のための音叉型ナノビーム振動子の提案
高机械Q值音叉型纳米束振荡器的提案
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    北 翔太;Marko Loncar
  • 通讯作者:
    Marko Loncar
Nano-scale optical and quantum optical devices based on photonic crystals
基于光子晶体的纳米级光学和量子光学器件
High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing
高灵敏度和高 Q 因子纳米槽平行四光束光子晶体腔,用于实时、无标记传感
  • DOI:
    10.1063/1.4867254
  • 发表时间:
    2014-08
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Daquan Yang;Shota Kita;Feng Liang;Cheng Wang;Huiping Tian;Yuefeng Ji;Marko Loncar;Qimin Quan
  • 通讯作者:
    Qimin Quan
Optical characterization of high quality two dimensional photonic crystal cavities
高质量二维光子晶体腔的光学表征
  • DOI:
    10.1109/qels.2002.1031116
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Yoshie;Jelena Vuckovic;Marko Loncar;Axel Scherer;Hao Chen;D. Deppe
  • 通讯作者:
    D. Deppe

Marko Loncar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marko Loncar', 18)}}的其他基金

Equipment: MRI: Track #1 Acquisition of Photonic Wirebonding Tool for Quantum and Nanophotonics
设备: MRI:轨道
  • 批准号:
    2320265
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
QuIC-TAQS: Integrated Lithium Niobate Quantum Photonics Platform
QuIC-TAQS:集成铌酸锂量子光子平台
  • 批准号:
    2137723
  • 财政年份:
    2021
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
Convergence Accelerator Phase I: Project Scoping Workshop (PSW) on Quantum Interconnects (QuIC)
融合加速器第一阶段:量子互连 (QuIC) 项目范围界定研讨会 (PSW)
  • 批准号:
    1946564
  • 财政年份:
    2019
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
CQIS: Coherent Spin-Phonon Interfaces with Diamond Color Centers
CQIS:与钻石色心的相干自旋声子界面
  • 批准号:
    1810233
  • 财政年份:
    2018
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
PFI-TT:Development of an efficient fiber interface for Integrated lithium-niobate Modulators.
PFI-TT:开发用于集成铌酸锂调制器的高效光纤接口。
  • 批准号:
    1827720
  • 财政年份:
    2018
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
RAISE-TAQS: Towards a Quantum Cloud
RAISE-TAQS:迈向量子云
  • 批准号:
    1839197
  • 财政年份:
    2018
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
E2CDA: Type II: Collaborative Research: Nanophotonic Lithium Niobate platform for next generation energy efficient and ultrahigh bandwidth optical interconnect
E2CDA:II 类:合作研究:用于下一代节能和超高带宽光学互连的纳米光子铌酸锂平台
  • 批准号:
    1740296
  • 财政年份:
    2017
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
OP Collaborative Research: Taking lithium-niobate to the nanoscale: shaping revolutionary material onto photonic microchips for developing next-generation light sources
OP 合作研究:将铌酸锂提升到纳米级:将革命性材料塑造到光子微芯片上,用于开发下一代光源
  • 批准号:
    1609549
  • 财政年份:
    2016
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
GOALI: Stable Nanomechanical Oscillators with Large f*Q Product
GOALI:具有大 f*Q 产品的稳定纳米机械振荡器
  • 批准号:
    1507508
  • 财政年份:
    2015
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
MRI: Acquisition of True 3D Laser Lithography System with Sub-Micrometer Resolution
MRI:获得亚微米分辨率的真正 3D 激光光刻系统
  • 批准号:
    1428694
  • 财政年份:
    2014
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant

相似国自然基金

飞秒激光诱导局域等离共振增强水热生长法机理及其在有序纳米结构加工中的应用
  • 批准号:
    52375422
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
纳米镍的塑性形变和加工硬化研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
兆声级窄频声表面波辅助探针纳米加工机理及方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
纳米颗粒和油凝胶调控W/O型高内相乳液稳定性和口腔加工特性的研究
  • 批准号:
    32272471
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
双光子纳米喷流干涉场激光超分辨加工方法
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Femtosecond laser-induced periodic surface nano-structures for engineering anisotropic thermal conductivities
用于工程各向异性热导率的飞秒激光诱导周期性表面纳米结构
  • 批准号:
    23K13260
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Study on Nano-in-process Measurement of Glass Surface Layer using Electron Enhanced Raman Scattering Spectroscopy (EERS) in Laser Filamentation
激光丝中电子增强拉曼散射光谱 (EERS) 玻璃表面层纳米过程测量的研究
  • 批准号:
    22H01375
  • 财政年份:
    2022
  • 资助金额:
    $ 36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of advanced plasma soft x-ray laser and next generation nano-processing technology
开发先进等离子软X射线激光器和下一代纳米加工技术
  • 批准号:
    21H03750
  • 财政年份:
    2021
  • 资助金额:
    $ 36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of novel nano-processing methods using chemically active negative ions with uniform energy
使用具有均匀能量的化学活性负离子开发新型纳米加工方法
  • 批准号:
    21K18618
  • 财政年份:
    2021
  • 资助金额:
    $ 36万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Elucidation of shear deformation mechanism of amorphous electrical steel sheet by punching tool with nano-metric structure
纳米结构冲裁工具阐明非晶电工钢板剪切变形机理
  • 批准号:
    21K03789
  • 财政年份:
    2021
  • 资助金额:
    $ 36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了