OP Collaborative Research: Taking lithium-niobate to the nanoscale: shaping revolutionary material onto photonic microchips for developing next-generation light sources
OP 合作研究:将铌酸锂提升到纳米级:将革命性材料塑造到光子微芯片上,用于开发下一代光源
基本信息
- 批准号:1609549
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract title: OP Collaborative Research: Taking lithium-niobate to the nanoscale: shaping revolutionary material onto photonic microchips for developing next-generation light sourcesAbstract (general): Lithium-niobate is a revolutionary material that has played a major role in transforming optical telecommunications. It has enabled electronic data (0s and 1s) to be directly written onto light pulses that travel the globe and essentially form the backbone of the internet. It is also used to change the color of light emitted by lasers, of importance for high-speed computing and sensing, as well as to enable realization of novel quantum sources of light that may enable next-generation ultra-secure optical communications. However, currently the performance of lithium-niobate based optical devices is limited by their bulky size. This project aims to miniaturize these to the nanoscale by patterning lithium-niobate onto a photonic microchip, thereby enhancing their efficiency many-fold. This will enable the design of novel light sources with greatly improved properties compared to current technology and also significantly reduce the optical power requirements. The proposed research program is a natural template for informing students, teachers, and the public of how scientists and engineers explore the unique behavior of materials at the nanoscale, and make use of these properties in the creation of new devices. The team will leverage the "magic" of optics and lasers to engage a wide audience and inform the public of their ongoing research. The program has strong theoretical and experimental components and addresses both fundamental and engineering aspects of light-generation in nanoscale optical devices and systems. Therefore, it represents a unique research and educational opportunity for students at all levels. The devices and systems that will be developed will be of great interest to both the scientific community and commercial industry.Abstract (technical): Lithium-niobate, with its large second-order susceptibility, relatively large refractive index and wide transmission window extending from ultra-violet to mid-infrared, is one of the most important optoelectronic materials, widely used for electro-optic modulation and classical & quantum optical frequency conversion. However, due to difficulties associated with fabrication, most of these components are discrete and cannot be easily integrated onto a photonic microchip. Fortunately, recent advances in lithium-niobate thin-film fabrication techniques, via crystal ion slicing, are promising and enable chip-scale integration of nanophotonic devices. The proposed program builds on these results and seeks to develop an integrated nonlinear nanophotonics platform that combines the unique material properties of periodically-poled lithium-niobate with the superior light confinement and dispersion engineering in wavelength-scale optical waveguides and cavities. The new platform will be developed based on thin x-cut lithium-niobate device layers (~500-nm thick) bonded on top of a SiO2 substrate that provides optical isolation. The team will develop new techniques for surface poling of thin x-cut lithium-niobate films, thus allowing for efficient phase matching. State of the art nanofabrication techniques will be used to realize optical waveguides and cavities directly in the periodically-poled device layer. The devices will operate over a wide wavelength range (visible to mid-infrared) and enable strong photon interactions resulting in 40-fold more efficient nonlinear processes than those found in conventional counterparts. The program is expected to result in a wide variety of integrated devices and systems with applications in quantum frequency conversion, entangled-photon pair generation, supercontinuum generation, and frequency comb generation. The proposed program is transformative since it introduces lithium-niobate into the family of materials suitable for integrated, on-chip photonics. It will result in the development of a wide range of novel & more efficient nonlinear optical devices & systems, and make an impact on disciplines as diverse as quantum information science & technology, remote sensing, astronomy and optoelectronics.
摘要标题:OP协作研究:将锂二叶酸锂带到纳米级:将革命性的材料塑造到光子微芯片上,以开发下一代光源摘要(一般):二氯锂是一种革命性的材料,在转换光学电信方面起着主要作用。它使电子数据(0s和1s)直接写入环球环境的光脉冲上,从本质上构成了互联网的骨干。它也用于改变激光发出的光的颜色,对于高速计算和传感的重要性,并能够实现新型的量子光源,从而可以实现下一代超秘密的光学通信。但是,目前,基于锂的光学设备的性能受其庞大尺寸的限制。该项目的目的是通过将锂二叶酸锂构图到光子微芯片上,从而将它们绘制为纳米级,从而增强其效率。与当前技术相比,这将使具有大大改善的新型光源的设计,并显着降低了光功率要求。拟议的研究计划是一种自然模板,可通知学生,老师和公众科学家和工程师如何探索纳米级材料的独特行为,并利用这些属性来创建新设备。该团队将利用光学和激光器的“魔力”吸引广泛的受众,并告知公众正在进行的研究。该计划具有强大的理论和实验组成部分,并介绍了纳米级光学设备和系统中轻产的基本和工程方面。因此,它代表了各级学生的独特研究和教育机会。将要开发的设备和系统对科学界和商业工业都引起人们的极大兴趣。提取(技术):氯锂含有较大的二阶敏感性,相对较大的折射率和从超绒毛范围扩展的宽宽窗口,从超violet扩展到中型汇率,是最重要的频率和量子的频率频率之一,是频率的频率和量子频率之一。但是,由于与制造有关的困难,这些组件中的大多数是离散的,并且不能轻易地集成到光子微芯片上。幸运的是,通过晶体离子切片,二氧甲酸锂薄膜制造技术的最新进展是有希望的,并且可以使纳米光子设备的碎屑尺度整合。提出的程序建立在这些结果的基础上,并试图开发一个集成的非线性纳米光子学平台,该平台结合了定期螺栓固定的硅甲酸锂的独特材料特性,以及在波长的光学尺度光学波导和腔体中的出色光限制和分散工程。新平台将基于在提供光学隔离的SIO2基板顶部粘合的薄X型X型二木锂设备层(〜500 nm厚)。该团队将开发新技术,用于薄X切割锂二橙色薄膜的表面螺栓,从而可以进行有效的相匹配。最先进的纳米化技术将直接在定期pol的设备层中实现光学波导和空腔。这些设备将在宽的波长范围内(可见到中红外),并实现强大的光子相互作用,从而产生比常规对应物中的效率高40倍的非线性过程。预计该程序将导致各种集成的设备和系统,并具有量子频率转换,纠缠 - 光子对生成,超弯曲生成和频率梳子生成的应用。提出的程序具有变革性,因为它将二氧甲酸锂引入适用于适用于综合片上光子学的材料家族。这将导致开发各种新颖,更有效的非线性光学设备和系统,并对像量子信息科学和技术,遥感,天文学和光电货量等多样化的学科产生影响。
项目成果
期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Second harmonic generation in nano-structured thin-film lithium niobate waveguides
纳米结构薄膜铌酸锂波导中的二次谐波产生
- DOI:10.1364/oe.25.006963
- 发表时间:2017-03-20
- 期刊:
- 影响因子:3.8
- 作者:Wang, Cheng;Xiong, Xiao;Loncar, Marko
- 通讯作者:Loncar, Marko
Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation
- DOI:10.1038/s41467-019-08969-6
- 发表时间:2019-02-28
- 期刊:
- 影响因子:16.6
- 作者:Wang, Cheng;Zhang, Mian;Loncar, Marko
- 通讯作者:Loncar, Marko
Ultra-low-loss integrated visible photonics using thin-film lithium niobate
- DOI:10.1364/optica.6.000380
- 发表时间:2019-03-20
- 期刊:
- 影响因子:10.4
- 作者:Desiatov, Boris;Shams-Ansari, Amirhassan;Loncar, Marko
- 通讯作者:Loncar, Marko
Nanophotonic lithium niobate electro-optic modulators
- DOI:10.1364/oe.26.001547
- 发表时间:2018-01-22
- 期刊:
- 影响因子:3.8
- 作者:Wang, Cheng;Zhang, Mian;Loncar, Marko
- 通讯作者:Loncar, Marko
Broadband electro-optic frequency comb generation in a lithium niobate microring resonator
- DOI:10.1038/s41586-019-1008-7
- 发表时间:2019-04-18
- 期刊:
- 影响因子:64.8
- 作者:Zhang, Mian;Buscaino, Brandon;Loncar, Marko
- 通讯作者:Loncar, Marko
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marko Loncar其他文献
部分スロットナノビーム光機械振動子の追究
部分开槽纳米束光机械振荡器的研究
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
北 翔太;Mike Burek;Daquan Yang;Marko Loncar - 通讯作者:
Marko Loncar
Nano-scale optical and quantum optical devices based on photonic crystals
基于光子晶体的纳米级光学和量子光学器件
- DOI:
10.1109/nano.2002.1032255 - 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
Jelena Vučković;T. Yoshie;Marko Loncar;H. Mabuchi;Axel Scherer - 通讯作者:
Axel Scherer
Optical characterization of high quality two dimensional photonic crystal cavities
高质量二维光子晶体腔的光学表征
- DOI:
10.1109/qels.2002.1031116 - 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
T. Yoshie;Jelena Vuckovic;Marko Loncar;Axel Scherer;Hao Chen;D. Deppe - 通讯作者:
D. Deppe
High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing
高灵敏度和高 Q 因子纳米槽平行四光束光子晶体腔,用于实时、无标记传感
- DOI:
10.1063/1.4867254 - 发表时间:
2014-08 - 期刊:
- 影响因子:4
- 作者:
Daquan Yang;Shota Kita;Feng Liang;Cheng Wang;Huiping Tian;Yuefeng Ji;Marko Loncar;Qimin Quan - 通讯作者:
Qimin Quan
Marko Loncar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marko Loncar', 18)}}的其他基金
Equipment: MRI: Track #1 Acquisition of Photonic Wirebonding Tool for Quantum and Nanophotonics
设备: MRI:轨道
- 批准号:
2320265 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
QuIC-TAQS: Integrated Lithium Niobate Quantum Photonics Platform
QuIC-TAQS:集成铌酸锂量子光子平台
- 批准号:
2137723 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
GOALI: Nano-Machining of Diamond Mirror for High-Power Laser Optics
GOALI:高功率激光光学器件金刚石镜的纳米加工
- 批准号:
1825257 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Convergence Accelerator Phase I: Project Scoping Workshop (PSW) on Quantum Interconnects (QuIC)
融合加速器第一阶段:量子互连 (QuIC) 项目范围界定研讨会 (PSW)
- 批准号:
1946564 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CQIS: Coherent Spin-Phonon Interfaces with Diamond Color Centers
CQIS:与钻石色心的相干自旋声子界面
- 批准号:
1810233 - 财政年份:2018
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
PFI-TT:Development of an efficient fiber interface for Integrated lithium-niobate Modulators.
PFI-TT:开发用于集成铌酸锂调制器的高效光纤接口。
- 批准号:
1827720 - 财政年份:2018
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
RAISE-TAQS: Towards a Quantum Cloud
RAISE-TAQS:迈向量子云
- 批准号:
1839197 - 财政年份:2018
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
E2CDA: Type II: Collaborative Research: Nanophotonic Lithium Niobate platform for next generation energy efficient and ultrahigh bandwidth optical interconnect
E2CDA:II 类:合作研究:用于下一代节能和超高带宽光学互连的纳米光子铌酸锂平台
- 批准号:
1740296 - 财政年份:2017
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
GOALI: Stable Nanomechanical Oscillators with Large f*Q Product
GOALI:具有大 f*Q 产品的稳定纳米机械振荡器
- 批准号:
1507508 - 财政年份:2015
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
MRI: Acquisition of True 3D Laser Lithography System with Sub-Micrometer Resolution
MRI:获得亚微米分辨率的真正 3D 激光光刻系统
- 批准号:
1428694 - 财政年份:2014
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
相似国自然基金
数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
- 批准号:72372084
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
在线医疗团队协作模式与绩效提升策略研究
- 批准号:72371111
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
面向人机接触式协同作业的协作机器人交互控制方法研究
- 批准号:62373044
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于数字孪生的颅颌面人机协作智能手术机器人关键技术研究
- 批准号:82372548
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
A-型结晶抗性淀粉调控肠道细菌协作产丁酸机制研究
- 批准号:32302064
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: OP: Meta-optical Computational Image Sensors
合作研究:OP:元光学计算图像传感器
- 批准号:
2127235 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: OP: Transition Metal Alloys: Emergent Properties for Near-Infrared Hot-Carrier Optoelectronics
合作研究:OP:过渡金属合金:近红外热载流子光电器件的新兴特性
- 批准号:
2114312 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: OP: Meta-optical Computational Image Sensors
合作研究:OP:元光学计算图像传感器
- 批准号:
2127331 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: OP: Transition Metal Alloys: Emergent Properties for Near-Infrared Hot-Carrier Optoelectronics
合作研究:OP:过渡金属合金:近红外热载流子光电器件的新兴特性
- 批准号:
2114304 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
OP: Collaborative Research: Development of Advanced Image Reconstruction Methods for Pre-Clinical Applications of Photoacoustic Computed Tomography
OP:合作研究:光声计算机断层扫描临床前应用的先进图像重建方法的开发
- 批准号:
1938702 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Standard Grant