ACED Fab: Ultrafast, low-power AI chip with a new class of MRAM for learning and inference at edge

ACED Fab:超快、低功耗 AI 芯片,配备新型 MRAM,用于边缘学习和推理

基本信息

  • 批准号:
    2314591
  • 负责人:
  • 金额:
    $ 55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

The collaborative team of this project under Advanced Chip Engineering Design and Fabrication (ACED Fab) program will be working on an exciting advancement in the field of artificial intelligence (AI) for edge computing, such as secured machine learning based on personalized or sensitive data in smartphones (a type of edge devices) without resorting to a server at a remote data center. The project introduces a new class of Magnetoresistive Random Access Memory (MRAM) called Spin-transfer torque (STT) Assisted Spin-orbit torque (SOT)-MRAM (SAS-MRAM) which features ultralow power consumption and ultrafast write speeds. By co-designing SAS-MRAM with CMOS circuits, the project aims to create energy-efficient edge AI systems. SAS-MRAM's non-volatile nature eliminates standby leakage power, making edge-AI chips more energy-efficient at the system level compared to existing approaches using Static Random Access Memory (SRAM). The project’s activities extend beyond technological advancements, with plans of K-12 STEM outreach, undergraduate/graduate training, curriculum development in innovation and entrepreneurship, and broadening participation of underrepresented minority groups in the microelectronics STEM field and semiconductor industry. The team’s efforts in education and inclusivity will contribute to a diverse and innovative future of the microelectronics industry. The new SAS-MRAM with ultralow power and ultrafast write speed will be co-designed with CMOS circuits for energy-efficient edge AI applications. The SAS-MRAM will be fabricated on top of a TN40G CMOS die through a custom back-end-of-line (BEOL) process. The team will systematically perform micromagnetic simulation and HSpice simulation to build Process Development Kits (PDKs) required for co-designing SAS-MRAM and CMOS circuits. Furthermore, the project will leverage SAS-MRAM to design, optimize, and tape-out an In-Memory Computing (IMC) chip prototype for edge-AI, which could implement both on-chip inference and training computation. Finally, the project will develop new continual learning algorithms that could minimize the memory weight updates (i.e., memory writes) and computing complexity, allowing the AI system to learn new data without forgetting previously learned knowledge. The resulting edge-AI chips will be significantly more energy-efficient at system level than the prevalent counterparts based on SRAM due to zero standby leakage power for non-volatile MRAM. On-device training/learning based on SAS-MRAM is potentially ultrafast due to lower latency from denser bit cells and multi-bit writing with shared SOT write lines. The project can potentially revolutionize edge AI devices and systems by leveraging SAS-MRAM and in-memory computing to create energy-efficient AI systems with improved performance.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目在人工智能领域(AI)(用于边缘计算)中的合作芯片工程设计和制造,例如基于智能手机的个性化或敏感数据(一种带平静的旋转转移扭矩)的确保机器学习(一种边缘设备)(STT) )辅助自旋轨道扭矩(SOT) - MRAM(SAS-MRAM),通过与CMOS Circuits MS共同设计SAS-MRAM,以创建能源效率的Edge Edge AI Systems。挥发性自然消除了备用泄漏功率,使用静态随机访问记忆(SRAM)的活动超出了技术进步,使Edge-Ai芯片更加能量能量 - 以静态随机访问记忆为单位。 /研究生培训,开发Inntrepreepreneurs精神,并扩大了微观的少数群体,而微型群体和半导体行业的努力。 - 使用CMOS CMOS CMOS CMOS CMOS CMOS CMOS CMOS CMOS CMOS CMOS CITH EDGE AI应用程序进行设计。 PDK)ING SAS-MRAM和CMOS电路所需 - 芯片推理和训练计算。基于SAS-MRAM的培训/学习可能是由于较密集的位单元中的较低而具有超快的速度,并且具有共享t写入线的多位。能量能量效果具有提高的性能。该奖项反映了NSF'SF'SFFLY的使命,并通过基金会的知识分子和更广泛的影响评估标准对评估进行了支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Slimmed Asymmetrical Contrastive Learning and Cross Distillation for Lightweight Model Training
用于轻量级模型训练的精简非对称对比学习和交叉蒸馏
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shan Wang其他文献

of endostatin in endothelium via regulating distinct endocytic pathways Cholesterol sequestration by nystatin enhances the uptake and activity
通过调节不同的内吞途径,内皮细胞中的内皮抑素通过制霉菌素封存胆固醇增强摄取和活性
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yang Chen;Shan Wang;Xin;Haoran Zhang;Yan Fu;Yongzhang Luo
  • 通讯作者:
    Yongzhang Luo
Effects of the Polypropylene Oxide Number on the Surface Properties of a Type of Extended Surfactant
聚环氧丙烷值对一类增量表面活性剂表面性能的影响
  • DOI:
    10.1002/jsde.12039
  • 发表时间:
    2018-05
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Mengdie Lv;Yawen Zhou;Shan Wang;Fu Han;Baocai Xu
  • 通讯作者:
    Baocai Xu
Integration of (+)-catechin and β-sitosterol to achieve excellent radical-scavenging activity in emulsions.
(+)-儿茶素和 β-谷甾醇的整合可在乳液中实现优异的自由基清除活性。
  • DOI:
    10.1016/j.foodchem.2018.08.098
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    8.8
  • 作者:
    Shan Wang;Shan;Songbai Liu
  • 通讯作者:
    Songbai Liu
o-Carborane based and atomically-precise metal clusters as hypergolic materials.
作为自燃材料的邻碳硼烷基原子级精确金属簇
  • DOI:
    10.1021/jacs.0c04638
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qian-You Wang;Jie Wang;Shan Wang;Zhao-Yang Wang;Man Cao;Chun-Lin He;Jun-Qing Yang;Shuang-Quan Zang;Thomas C. W. Mak
  • 通讯作者:
    Thomas C. W. Mak
Convolution-GRU Based on Independent Component Analysis for fMRI Analysis with Small and Imbalanced Samples
基于独立分量分析的卷积-GRU用于小样本和不平衡样本的fMRI分析
  • DOI:
    10.3390/app10217465
  • 发表时间:
    2020-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shan Wang;Feng Duan;Mingxin Zhang
  • 通讯作者:
    Mingxin Zhang

Shan Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shan Wang', 18)}}的其他基金

PFI-RP: Resilient and Energy-Efficient Memory Chips for Enhanced Mobile AI and Personalized Machine Learning
PFI-RP:用于增强移动人工智能和个性化机器学习的弹性和节能内存芯片
  • 批准号:
    2345655
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: Efficient Situation-Aware AI Processing in Advanced 2-Terminal SOT-MRAM
合作研究:FuSe:先进 2 端子 SOT-MRAM 中的高效态势感知 AI 处理
  • 批准号:
    2328804
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
Kinetic Characterization of Three-Dimensional (3D) Magnetic Reconnection: A Transformative Step
三维 (3D) 磁重联的动力学表征:一个变革性的步骤
  • 批准号:
    1619584
  • 财政年份:
    2016
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
Rapid Magnetic DNA and Protein Chip for Point of Care Molecular Diagnostics
用于护理点分子诊断的快速磁性 DNA 和蛋白质芯片
  • 批准号:
    0801385
  • 财政年份:
    2008
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Novel Granular High Permeability Materials and Integrated Inductors for Power Delivery and Wireless Communication
用于电力传输和无线通信的新型颗粒高磁导率材料和集成电感器
  • 批准号:
    0423908
  • 财政年份:
    2004
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Investigation of New Soft Magnetic Films for GHz Magnetic Recording Heads and Integrated Inductors
GHz 磁记录头和集成电感器用新型软磁薄膜的研究
  • 批准号:
    0096704
  • 财政年份:
    2001
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
Deposition and Characterization of Novel Spin Dependent Tunneling Junctions
新型自旋相关隧道结的沉积和表征
  • 批准号:
    9700168
  • 财政年份:
    1997
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
Investigation of Laminated High Saturation Magnetic Films on Sloping Surfaces & High Data Rate Magnetic Recording
倾斜表面上层压高饱和磁性薄膜的研究
  • 批准号:
    9710223
  • 财政年份:
    1997
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
RIA: New high moment soft magnetic multilayers & their applications in sub-half micron track width magnetic recording
RIA:新型高磁矩软磁多层膜
  • 批准号:
    9409805
  • 财政年份:
    1994
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant

相似国自然基金

基于半胱氨酸细胞毒性有效降低构建高效生产L-半胱氨酸细胞工厂的研究
  • 批准号:
    32371551
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
假单胞菌木质素解聚酶系催化、分泌机理解析,以构建木质素产能细胞工厂
  • 批准号:
    32370115
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
非洲猪瘟病毒A151R蛋白调控病毒工厂形成的分子机制
  • 批准号:
    32372983
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
半理性设计RNA聚合酶提高微生物细胞工厂生产性能
  • 批准号:
    32371489
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于细胞工厂的靶向人源硫酸化O-GalNAc/Mannose多糖组的扩增制备
  • 批准号:
    22307020
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Structural Biology Core
结构生物学核心
  • 批准号:
    10549644
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
FuSe-TG: FAB: A Heterogeneous Ferroelectronics Platform for Accelerating Big Data Analytics
FuSe-TG:FAB:加速大数据分析的异构铁电子平台
  • 批准号:
    2235366
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Developing an integrated pipeline for routine generation of orthogonal GPCR-targeting nanobodies
开发用于常规生成正交 GPCR 靶向纳米抗体的集成管道
  • 批准号:
    10603669
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
Broadly neutralizing SARS-CoV-2 peptidic knobs
广泛中和 SARS-CoV-2 肽旋钮
  • 批准号:
    10735902
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
Novel Polymer-antibody Conjugates as Long-acting Therapeutics for Ocular Diseases
新型聚合物-抗体缀合物作为眼部疾病的长效治疗药物
  • 批准号:
    10760186
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了