Collaborative Research: FuSe: Efficient Situation-Aware AI Processing in Advanced 2-Terminal SOT-MRAM
合作研究:FuSe:先进 2 端子 SOT-MRAM 中的高效态势感知 AI 处理
基本信息
- 批准号:2328804
- 负责人:
- 金额:$ 70万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2026-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The amount of data required to be analyzed by computing systems has been increasing drastically to exascale (i.e., billions of gigabytes) and beyond. Meanwhile, owing to the boom in artificial intelligence (AI), especially Deep Neural Network (DNN), there is a need for high performance, efficient, fast, and adaptive AI-based big data processing systems. However, those requirements are not sufficiently met by existing computing solutions due to the power-wall in silicon-based semiconductor devices, memory-wall in traditional Von-Neuman computing architecture, and ultra computation- and memory-intensive DNN-based AI algorithms. This project brings together an interdisciplinary group of researchers, with expertise spanning from material science, device fabrication, integrated circuit design, computer architecture, and AI algorithms to undertake innovative device-circuit-algorithm co-design for developing an AI Processing-In-Memory (AI-PIM) system that could leverage the emerging non-volatile magnetic memory technology to implement efficient AI data processing, as well as situation-aware on-chip continual learning. This project targets to significantly improve the AI data processing energy efficiency, with 100X higher efficiency than that of state-of-the-art Graph Processing Units (GPUs). The project will greatly benefit various application areas, such as autonomous driving, robotics, personalized cognitive speech, and smart connected health, etc. This project will also involve education and workforce development activities, including K-12 STEM outreach, undergraduate/graduate training, curriculum development in semiconductor, semiconductor industry internship mentoring, cleanroom fab internships, advance integrated circuit design courses. It will also encourage broader participation of female and under-represented minorities in the microelectronics and semiconductor chip industry. This project will advance knowledge and conduct cross-layer research spanning from emerging Spin-Orbit Torque Magnetic Random Access Memory (SOT-MRAM) material, device, circuit, architecture, to AI algorithm exploration with three main interweaved thrusts. Thrust 1 will explore unconventional spins in SOT materials, e.g., MnPd3, and novel device geometry to fabricate a new design of 2-terminal SOT-MRAM, which simultaneously delivers unlimited endurance, nano-seconds programming time, very high cell density, deterministic programming without external magnetic field, zero leakage, and non-volatility. Leveraging the developed 2-terminal SOT-MRAM, Thrust 2 will design and tape-out an AI Processing-in-Memory (PIM) chip to implement fully digital ‘in-memory sparse multiplication-and-accumulation (MAC)’ operations that support both forward and backward computations of neural networks. Following a co-design methodology, Thrust 3 will first investigate automated network architecture search methods to construct AI model best suitable for given situation while considering our AI-PIM system constraint. This thrust will further develop novel PIM-friendly, compute- and memory-efficient, situation-aware continual learning algorithms that could minimize the power-hungry on-chip weight update (i.e., memory write) complexity, while learning new situation- and user-specific data.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
通过计算系统分析所需的数据量越来越大,对Exascale(即数十亿GB)及以后。同时,由于人工智能(AI)的繁荣,尤其是深神经网络(DNN),因此需要高性能,高效,快速和基于自适应的AI大数据处理系统。但是,由于基于硅的半导体设备中的电壁,传统的von-neuman计算体系结构中的内存壁以及超计算和基于内存的DNN基于DNN的AI算法,因此由于现有的计算解决方案无法充分满足这些要求。该项目汇集了跨学科的研究人员,这些研究人员涵盖了材料科学,设备制造,集成电路设计,计算机架构和AI算法的专家,以进行创新的设备电路 - 叠加符号,以开发AI处理中的AI处理(AI-PIM)系统,从而可以实现效率的AI,从而实现效率AI,以实现效率的AI,以实现有效的Memelitime Memainity Memberiate Memainity Memainity Memainity Memainity Memagnite Memainity and Imerage Memainity Memainity and cor war and cor par and cor par and colagatie for cor war片上持续学习。该项目的目标是显着提高AI数据处理能源效率,效率高100倍,而最先进的图形处理单元(GPU)。该项目将极大地受益于各个应用领域,例如自动驾驶,机器人技术,个性化认知语音和智能连接的健康等。该项目还将涉及教育和劳动力发展活动,包括K-12 STEM外展,本科/研究生培训,半导体课程开发,半导体行业,半导体行业,半导体行业,清洁室内式织物,先进的巡回赛。这也将鼓励女性和代表性不足的少数民族在微电子和半导体芯片行业中的广泛参与。该项目将推进知识和进行跨层研究,从新兴的自旋轨道扭矩磁性随机访问记忆(SOT-MRAM)材料,设备,电路,体系结构到AI算法探索,并具有三个主要交互式推力。推力1将探索SOT材料中的非常规的旋转,例如MNPD3和新型设备几何形状,以制造2端SOT-MRAM的新设计,该设计同时提供无限的耐力,纳米方面的纳米方案时间,非常高的细胞密度,非常高的细胞密度,没有外部磁场,没有外部磁场,零泄漏,零泄漏,零泄漏。推力2利用开发的2端SOT-MRAM,将设计和磁带插入Memory(PIM)芯片的AI处理,以实现完全数字的“内存中稀疏乘法和积累(MAC)”操作,以支持神经网络的前进和后退计算。遵循共同设计的方法,Thrust 3将首先研究自动化网络体系结构搜索方法,以构建最适合给定情况的AI模型,同时考虑我们的AI-PIM系统约束。这一推力将进一步发展新颖的PIM友好,计算和记忆力,情境意识到的持续学习算法,这些算法可以最大程度地减少持芯片的重量更新(即记忆写入)的复杂性,同时学习新的状况和用户特定的数据,这些奖项反映了NSF的法定任务和良好的范围,这是通过评估良好的范围来进行的,这是通过评估的范围来进行的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shan Wang其他文献
Well‐posedness of quantum stochastic differential equations driven by fermion Brownian motion in noncommutative
Lp‐space
非交换 Lp 空间中费米子布朗运动驱动的量子随机微分方程的适定性
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:2.9
- 作者:
Guangdong Jing;Penghui Wang;Shan Wang - 通讯作者:
Shan Wang
Identification of novel PI3Kδ selective inhibitors by a SVM based multistage virtual screening and molecular dynamics simulations
通过基于 SVM 的多级虚拟筛选和分子动力学模拟鉴定新型 PI3Kδ 选择性抑制剂
- DOI:
- 发表时间:
- 期刊:
- 影响因子:5.6
- 作者:
Jing-wei Lian;Shan Wang;Ming-yang Wang;Shi-long Li;Wan-qiu Li;Fan-hao Meng - 通讯作者:
Fan-hao Meng
of endostatin in endothelium via regulating distinct endocytic pathways Cholesterol sequestration by nystatin enhances the uptake and activity
通过调节不同的内吞途径,内皮细胞中的内皮抑素通过制霉菌素封存胆固醇增强摄取和活性
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Yang Chen;Shan Wang;Xin;Haoran Zhang;Yan Fu;Yongzhang Luo - 通讯作者:
Yongzhang Luo
Online listening responses and e-learning performance
在线听力反应和电子学习表现
- DOI:
10.1108/itp-09-2021-0687 - 发表时间:
2022-06 - 期刊:
- 影响因子:4.4
- 作者:
Zhao Du;Fang Wang;Shan Wang;Xiao Xiao - 通讯作者:
Xiao Xiao
From new form to new entry: introduction to the special theme on loanwords and non-standard orthography
从新形式到新入口:外来词与非标准正字法专题介绍
- DOI:
10.1007/s40607-020-00072-z - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Shan Wang;Chu - 通讯作者:
Chu
Shan Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shan Wang', 18)}}的其他基金
PFI-RP: Resilient and Energy-Efficient Memory Chips for Enhanced Mobile AI and Personalized Machine Learning
PFI-RP:用于增强移动人工智能和个性化机器学习的弹性和节能内存芯片
- 批准号:
2345655 - 财政年份:2024
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
ACED Fab: Ultrafast, low-power AI chip with a new class of MRAM for learning and inference at edge
ACED Fab:超快、低功耗 AI 芯片,配备新型 MRAM,用于边缘学习和推理
- 批准号:
2314591 - 财政年份:2023
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
Kinetic Characterization of Three-Dimensional (3D) Magnetic Reconnection: A Transformative Step
三维 (3D) 磁重联的动力学表征:一个变革性的步骤
- 批准号:
1619584 - 财政年份:2016
- 资助金额:
$ 70万 - 项目类别:
Continuing Grant
Rapid Magnetic DNA and Protein Chip for Point of Care Molecular Diagnostics
用于护理点分子诊断的快速磁性 DNA 和蛋白质芯片
- 批准号:
0801385 - 财政年份:2008
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
Novel Granular High Permeability Materials and Integrated Inductors for Power Delivery and Wireless Communication
用于电力传输和无线通信的新型颗粒高磁导率材料和集成电感器
- 批准号:
0423908 - 财政年份:2004
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
Investigation of New Soft Magnetic Films for GHz Magnetic Recording Heads and Integrated Inductors
GHz 磁记录头和集成电感器用新型软磁薄膜的研究
- 批准号:
0096704 - 财政年份:2001
- 资助金额:
$ 70万 - 项目类别:
Continuing Grant
Deposition and Characterization of Novel Spin Dependent Tunneling Junctions
新型自旋相关隧道结的沉积和表征
- 批准号:
9700168 - 财政年份:1997
- 资助金额:
$ 70万 - 项目类别:
Continuing Grant
Investigation of Laminated High Saturation Magnetic Films on Sloping Surfaces & High Data Rate Magnetic Recording
倾斜表面上层压高饱和磁性薄膜的研究
- 批准号:
9710223 - 财政年份:1997
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
RIA: New high moment soft magnetic multilayers & their applications in sub-half micron track width magnetic recording
RIA:新型高磁矩软磁多层膜
- 批准号:
9409805 - 财政年份:1994
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
相似国自然基金
面向NP难问题多种求解算法的皇冠分解技术研究
- 批准号:62372066
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
线粒体功能障碍在帕金森病中的作用机制及干预策略研究
- 批准号:32330040
- 批准年份:2023
- 资助金额:218 万元
- 项目类别:重点项目
Ybx3-Slc3a2介导的氨基酸转运在p53突变T细胞淋巴瘤发生发展中的作用机制研究
- 批准号:82300216
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
液晶材料毫米波介电性能测试方法与精细化测试建模研究
- 批准号:62301134
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
寒旱区多枝柽柳年轮生长速率的测量及应用研究
- 批准号:32360369
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
相似海外基金
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328975 - 财政年份:2024
- 资助金额:
$ 70万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328973 - 财政年份:2024
- 资助金额:
$ 70万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328972 - 财政年份:2024
- 资助金额:
$ 70万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328974 - 财政年份:2024
- 资助金额:
$ 70万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: Indium selenides based back end of line neuromorphic accelerators
合作研究:FuSe:基于硒化铟的后端神经形态加速器
- 批准号:
2328741 - 财政年份:2023
- 资助金额:
$ 70万 - 项目类别:
Continuing Grant