Collaborative Research: OAC Core: Topology-Aware Data Compression for Scientific Analysis and Visualization

合作研究:OAC 核心:用于科学分析和可视化的拓扑感知数据压缩

基本信息

  • 批准号:
    2313122
  • 负责人:
  • 金额:
    $ 20.18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

Today's large-scale simulations are producing vast amounts of data that are revolutionizing scientific thinking and practices. For instance, a fusion simulation can produce 200 petabytes of data in a single run, while a climate simulation can generate 260 terabytes of data every 16 seconds with a 1 square kilometer resolution. As the disparity between data generation rates and available I/O bandwidths continues to grow, data storage and movement are becoming significant bottlenecks for extreme-scale scientific simulations in terms of in situ and post hoc analysis and visualization. The disparity necessitates data compression, which compresses large-scale simulations data in situ, and decompresses data in situ and/or post hoc for analysis and exploration. On the other hand, a critical step in extracting insight from large-scale simulations involves the definition, extraction, and evaluation of features of interest. Topological data analysis has provided powerful tools to capture features from scientific data in turbulent combustion, astronomy, climate science, computational physics and chemistry, and ecology. While lossy compression is leveraged to address the big data challenges, most existing lossy compressors are agnostic of and thus fail to preserve topological features that are essential to scientific discoveries. This project aims to research and develop advanced lossy compression techniques and software that preserve topological features in data for in situ and post hoc analysis and visualization at extreme scales. The success of this project will promote scientific research on driving applications in cosmology, climate, and fusion by enabling efficient and effective compression for scientific data, and the impact scales to other science and engineering disciplines. Furthermore, the research products of this project will be integrated into visualization and parallel processing curricula, disseminated via research and training workshops, and used to attract underrepresented students for broadening participation in computing. This project tackles the data compression, analysis, and visualization needs in extreme-scale scientific simulations by developing a suite of topology-aware data compression algorithms for scalar field and vector field data. Such algorithms effectively reduce the size of data while preserving critical features defined by topological notions. This project will define and enforce topology-aware constraints over advanced lossy compression algorithms. Such capabilities have not been studied systematically within today’s data compression paradigm. This project will impact specific fields, including computational science, data analysis, data compression, and visualization, and the broader scientific community. The research products of this project will be delivered as publicly available software to significantly advance the research cyberinfrastructure for current and upcoming exascale systems. This project will foster novel discoveries in multiple scientific disciplines beyond cosmology, climate, and fusion by enabling efficient and effective compression on a wide range of platforms.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
当今的大规模模拟正在产生大量数据,这些数据正在彻底改变科学思维和实践,例如,核聚变模拟一次可以产生 200 PB 的数据,而气候模拟每 16 秒可以产生 260 TB 的数据。 1 平方公里的分辨率随着数据生成速率和可用 I/O 带宽之间的差距不断扩大,数据存储和移动正在成为超大规模科学模拟的重大瓶颈。现场和事后分析和可视化的差异需要数据压缩,即在现场压缩大规模模拟数据,并在现场和/或事后解压缩数据以进行分析和探索。从大规模模拟中获取洞察涉及感兴趣特征的定义、提取和评估拓扑数据分析为从湍流燃烧、天文学、气候科学、计算物理和化学等领域的科学数据中捕获特征提供了强大的工具。虽然有损压缩被用来解决大数据挑战,但大多数现有的有损压缩器不知道,因此无法保留对科学发现至关重要的拓扑特征。该项目旨在研究和开发先进的有损压缩技术和软件。保留数据中的拓扑特征,以便在极端尺度下进行原位和事后分析和可视化,该项目的成功将通过对科学数据及其影响进行高效和有效的压缩,促进推动宇宙学、气候和融合应用的科学研究。秤此外,该项目的研究产品将被整合到可视化和并行处理课程中,通过研究和培训研讨会进行传播,并用于吸引代表性不足的学生扩大对计算的参与。通过开发一套针对标量场和矢量场数据的拓扑感知数据压缩算法,这些算法可以有效地减少数据大小,同时保留拓扑概念定义的关键特征。该项目将定义并强制执行对高级有损压缩算法的拓扑感知约束。在当今的数据压缩范例中,此类功能尚未得到系统研究。该项目将影响特定领域,包括计算科学、数据分析、数据压缩和可视化。该项目的研究产品将作为公开软件提供,以显着推进当前和即将到来的亿亿级系统的研究网络基础设施。该项目将通过实现高效的方式,促进宇宙学、气候和核聚变以外的多个科学学科的新发现。和有效的该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xin Liang其他文献

Dynamic interreceptor coupling: a novel working mechanism of two-dimensional ryanodine receptor array.
动态受体间耦合:二维兰尼碱受体阵列的新型工作机制。
  • DOI:
    10.1529/biophysj.106.090670
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Xin Liang;Xiaofang Hu;Jun Hu
  • 通讯作者:
    Jun Hu
Co9S8-C-Li2S composite synthesized via synchronous carbothermal reduction process as cathode material for high-performance Li-ion-S batteries
通过同步碳热还原法合成的Co9S8-C-Li2S复合材料作为高性能锂离子电池正极材料
  • DOI:
    10.1016/j.matlet.2021.131068
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Xin Liang;Lulu Wang;Yang Wang;Jufeng Yun;Yi Sun;Hongfa Xiang
  • 通讯作者:
    Hongfa Xiang
Sex difference of mutation clonality in diffuse glioma evolution
弥漫性胶质瘤进化中突变克隆的性别差异
  • DOI:
    10.1093/neuonc/noy154
  • 发表时间:
    2018-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hongyi Zhang;Jianlong Liao;Xinxin Zhang;Erjie Zhao;Xin Liang;Shangyi Luo;Jian Shi;Fulong Yu;Jinyuan Xu;Weitao Shen;Yixue Li;Yun Xiao;Xia Li
  • 通讯作者:
    Xia Li
Nondestructive detection and grading of flesh translucency in pineapples with visible and near-infrared spectroscopy
利用可见光和近红外光谱对菠萝果肉半透明度进行无损检测和分级
  • DOI:
    10.1016/j.postharvbio.2022.112029
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    7
  • 作者:
    Sai Xu;Jinchang Ren;Huazhong Lu;Xu Wang;Xiuxiu Sun;Xin Liang
  • 通讯作者:
    Xin Liang
Brainstem schwannoma: a case report and review of clinical and imaging features
脑干神经鞘瘤:病例报告及临床和影像学特征回顾
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    Xiao Liang;Wenwei Shi;Xiaochun Wang;Jiangbo Qin;Le Wang;Xiaofeng Wu;Xin Liang;Hui Zhang;Yan Tan
  • 通讯作者:
    Yan Tan

Xin Liang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xin Liang', 18)}}的其他基金

RII Track-4: NSF: Scalable MPI with Adaptive Compression for GPU-based Computing Systems
RII Track-4:NSF:适用于基于 GPU 的计算系统的具有自适应压缩的可扩展 MPI
  • 批准号:
    2327266
  • 财政年份:
    2024
  • 资助金额:
    $ 20.18万
  • 项目类别:
    Standard Grant
Collaborative Research: Elements: ProDM: Developing A Unified Progressive Data Management Library for Exascale Computational Science
协作研究:要素:ProDM:为百亿亿次计算科学开发统一的渐进式数据管理库
  • 批准号:
    2311756
  • 财政年份:
    2023
  • 资助金额:
    $ 20.18万
  • 项目类别:
    Standard Grant
CRII: OAC: Enabling Quantities-of-Interest Error Control for Trust-Driven Lossy Compression
CRII:OAC:为信任驱动的有损压缩启用感兴趣数量错误控制
  • 批准号:
    2330367
  • 财政年份:
    2023
  • 资助金额:
    $ 20.18万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Pilot: Research Workforce Development for Deep Learning Systems in Advanced GPU Cyberinfrastructure
协作研究:网络培训:试点:高级 GPU 网络基础设施中深度学习系统的研究人员开发
  • 批准号:
    2330364
  • 财政年份:
    2023
  • 资助金额:
    $ 20.18万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Pilot: Research Workforce Development for Deep Learning Systems in Advanced GPU Cyberinfrastructure
协作研究:网络培训:试点:高级 GPU 网络基础设施中深度学习系统的研究人员开发
  • 批准号:
    2230098
  • 财政年份:
    2022
  • 资助金额:
    $ 20.18万
  • 项目类别:
    Standard Grant
CRII: OAC: Enabling Quantities-of-Interest Error Control for Trust-Driven Lossy Compression
CRII:OAC:为信任驱动的有损压缩启用感兴趣数量错误控制
  • 批准号:
    2153451
  • 财政年份:
    2022
  • 资助金额:
    $ 20.18万
  • 项目类别:
    Standard Grant

相似国自然基金

离子型稀土渗流-应力-化学耦合作用机理与溶浸开采优化研究
  • 批准号:
    52364012
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
亲环蛋白调控作物与蚜虫互作分子机制的研究
  • 批准号:
    32301770
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于金属-多酚网络衍生多相吸波体的界面调控及电磁响应机制研究
  • 批准号:
    52302362
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
职场网络闲逛行为的作用结果及其反馈效应——基于行为者和观察者视角的整合研究
  • 批准号:
    72302108
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
EIF6负调控Dicer活性促进EV71复制的分子机制研究
  • 批准号:
    32300133
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
  • 批准号:
    2414474
  • 财政年份:
    2024
  • 资助金额:
    $ 20.18万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
  • 批准号:
    2403312
  • 财政年份:
    2024
  • 资助金额:
    $ 20.18万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Large-Scale Spatial Machine Learning for 3D Surface Topology in Hydrological Applications
合作研究:OAC 核心:水文应用中 3D 表面拓扑的大规模空间机器学习
  • 批准号:
    2414185
  • 财政年份:
    2024
  • 资助金额:
    $ 20.18万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Learning AI Surrogate of Large-Scale Spatiotemporal Simulations for Coastal Circulation
合作研究:OAC Core:学习沿海环流大规模时空模拟的人工智能替代品
  • 批准号:
    2402947
  • 财政年份:
    2024
  • 资助金额:
    $ 20.18万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
  • 批准号:
    2403313
  • 财政年份:
    2024
  • 资助金额:
    $ 20.18万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了