CRII: OAC: Enabling Quantities-of-Interest Error Control for Trust-Driven Lossy Compression
CRII:OAC:为信任驱动的有损压缩启用感兴趣数量错误控制
基本信息
- 批准号:2153451
- 负责人:
- 金额:$ 17.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).Scientific simulations and instruments are producing data at volumes and velocities that overwhelm network and storage systems. Although error-controlled lossy compressors have been employed to mitigate these data issues, many scientists still feel reluctant to adopt them because these compressors provide no guarantee on the accuracy of downstream analysis results derived from raw data. This project aims to fill this gap by developing a trust-driven lossy data compression infrastructure capable of strictly controlling the errors in downstream analysis theoretically and practically to facilitate the use of data reduction in scientific applications. Success of this project will promote the progress of science in multiple disciplines via effective data reduction, and contribute to resolving important societal problems including electric generation, weather forecasting, material design, and transportation. Moreover, this project will contribute to the growth and development of future generations of scientists and engineers through educational and engagement activities, including development of new curriculum and recruitment of K-12 students.Existing lossy compression techniques either overlook error quantification or provide error control only for raw data, leaving uncertainties in the outcome of downstream quantities of interest (QoIs) computed from the raw data. This greatly concerns many computational scientists who wish to reduce their data while preserving necessary information, preventing them from adopting lossy compression in their applications. This research will address these problems through an integration of theory and implementation via three tasks. First, a novel theory enabling error control on downstream QoIs will be developed. This will fundamentally address the trustability issues of existing error controlled lossy compressors that provide error control only on raw data. Second, an optimization method ensuring tight error control will be applied based on rigorous analysis, to achieve higher compression ratios under the same requirements. Third, a scalable infrastructure will be built through a careful integration with advanced compression frameworks and tailored parallelization based on target QoIs, in order to take full advantage of existing compression algorithms and computational patterns in the target QoIs. The project will enable application scientists to store the most valuable information in their data based on their unique needs, creating opportunities for novel findings in multiple scientific disciplines including climatology, cosmology, and seismology.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项是根据2021年《美国救援计划法》的全部或部分资助的(公共法117-2)。科学的模拟和工具正在以压倒网络和存储系统的量和速度生产数据。尽管已使用错误控制的有损压缩机来减轻这些数据问题,但许多科学家仍然不愿意采用它们,因为这些压缩机无法保证从原始数据中得出的下游分析结果的准确性。该项目的目的是通过开发一个能够严格控制下游分析中的错误,理论上和实际上以促进科学应用程序中的数据减少的使用,以填补这一空白。该项目的成功将通过有效的数据来促进多个学科的科学进步,并有助于解决重要的社会问题,包括发电,天气预报,材料设计和运输。此外,该项目将通过教育和参与活动为子孙后代的发展和发展做出贡献,包括开发新课程和K-12学生的招聘。存在损失的压缩技术要么仅忽略错误量化,要么仅为原始数据提供错误的错误控制,从而在QOIS的下降量(QOIS)的结果中造成了不确定性的计算。这极大地涉及许多希望减少数据的计算科学家,同时保留必要的信息,从而阻止他们在应用程序中采用损失压缩。这项研究将通过通过三个任务整合理论和实施来解决这些问题。首先,将开发出一种新的理论,从而可以对下游QOIS进行误差控制。这将从根本上解决现有的控制损失压缩机的可信度问题,这些压缩机仅在原始数据上提供错误控制。其次,一种优化方法确保将基于严格的分析应用严格的误差控制,以在相同的要求下实现更高的压缩比。第三,将通过基于目标QOI的高级压缩框架和量身定制的并行化来构建可扩展的基础架构,以充分利用目标Qois中现有的压缩算法和计算模式。该项目将使应用科学家根据其独特的需求在其数据中存储最有价值的信息,从而为多个科学学科的新发现创造机会,包括气候学,宇宙学和地震学。该奖项反映了NSF的法定任务,并认为通过使用该基金会的知识分子和更广泛的影响来审查Criteria的评估,并被视为值得通过评估的支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Region-adaptive, Error-controlled Scientific Data Compression using Multilevel Decomposition
- DOI:10.1145/3538712.3538717
- 发表时间:2022-07
- 期刊:
- 影响因子:0
- 作者:Qian Gong;Ben Whitney;Chengzhu Zhang;Xin Liang;A. Rangarajan;Jieyang Chen;Lipeng Wan;P. Ullrich;Qing Liu;R. Jacob;Sanjay Ranka;S. Klasky
- 通讯作者:Qian Gong;Ben Whitney;Chengzhu Zhang;Xin Liang;A. Rangarajan;Jieyang Chen;Lipeng Wan;P. Ullrich;Qing Liu;R. Jacob;Sanjay Ranka;S. Klasky
Toward Quantity-of-Interest Preserving Lossy Compression for Scientific Data
- DOI:10.14778/3574245.3574255
- 发表时间:2022-12
- 期刊:
- 影响因子:0
- 作者:Pu Jiao;S. Di;Hanqi Guo;Kai Zhao;Jiannan Tian;Dingwen Tao;Xin Liang;F. Cappello
- 通讯作者:Pu Jiao;S. Di;Hanqi Guo;Kai Zhao;Jiannan Tian;Dingwen Tao;Xin Liang;F. Cappello
Dynamic Quality Metric Oriented Error Bounded Lossy Compression for Scientific Datasets
科学数据集的动态质量度量导向误差有损压缩
- DOI:10.1109/sc41404.2022.00067
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Liu, Jinyang;Di, Sheng;Zhao, Kai;Liang, Xin;Chen, Zizhong;Cappello, Franck
- 通讯作者:Cappello, Franck
Toward Feature-Preserving Vector Field Compression
走向保留特征的矢量场压缩
- DOI:10.1109/tvcg.2022.3214821
- 发表时间:2022
- 期刊:
- 影响因子:5.2
- 作者:Liang, Xin;Di, Sheng;Cappello, Franck;Raj, Mukund;Liu, Chunhui;Ono, Kenji;Chen, Zizhong;Peterka, Tom;Guo, Hanqi
- 通讯作者:Guo, Hanqi
SZ3: A Modular Framework for Composing Prediction-Based Error-Bounded Lossy Compressors
SZ3:用于组合基于预测的误差有限有损压缩器的模块化框架
- DOI:10.1109/tbdata.2022.3201176
- 发表时间:2023
- 期刊:
- 影响因子:7.2
- 作者:Liang, Xin;Zhao, Kai;Di, Sheng;Li, Sihuan;Underwood, Robert;Gok, Ali M.;Tian, Jiannan;Deng, Junjing;Calhoun, Jon C.;Tao, Dingwen
- 通讯作者:Tao, Dingwen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xin Liang其他文献
Comparison of the diagnostic performance of three ultrasound thyroid nodule risk stratification systems for follicular thyroid neoplasm: K-TIRADS, ACR -TIRADS and C-TIRADS.
三种超声甲状腺结节风险分层系统(K-TIRADS、ACR-TIRADS 和 C-TIRADS)对滤泡性甲状腺肿瘤的诊断性能比较。
- DOI:
10.3233/ch-231898 - 发表时间:
2023 - 期刊:
- 影响因子:2.1
- 作者:
Hua;Yu;Xin Liang;Zhi Zhang;Xiao - 通讯作者:
Xiao
Nondestructive detection and grading of flesh translucency in pineapples with visible and near-infrared spectroscopy
利用可见光和近红外光谱对菠萝果肉半透明度进行无损检测和分级
- DOI:
10.1016/j.postharvbio.2022.112029 - 发表时间:
2022-10 - 期刊:
- 影响因子:7
- 作者:
Sai Xu;Jinchang Ren;Huazhong Lu;Xu Wang;Xiuxiu Sun;Xin Liang - 通讯作者:
Xin Liang
The reaction of NO + C3H6 + O2 over the mesoporous SBA-15 supported transition metal catalysts
NO C3H6 O2在介孔SBA-15负载过渡金属催化剂上的反应
- DOI:
10.1016/j.cattod.2011.04.014 - 发表时间:
2011-10 - 期刊:
- 影响因子:5.3
- 作者:
Xin Liang;Zhigang Lei;Yanli Zhao;Jun Xue;Dongjun Shi;Biaohua Chen;Runduo Zhang - 通讯作者:
Runduo Zhang
The liver X receptors agonist GW3965 attenuates depressive‐like behaviors and suppresses microglial activation and neuroinflammation in hippocampal subregions in a mouse depression model
肝脏 X 受体激动剂 GW3965 可减轻小鼠抑郁模型中的抑郁样行为并抑制海马亚区域的小胶质细胞活化和神经炎症
- DOI:
10.1002/cne.25380 - 发表时间:
2022-06 - 期刊:
- 影响因子:0
- 作者:
Jing Li;Peilin Zhu;Yue Li;Kai Xiao;Jing Tang;Xin Liang;Yanmin Luo;Jin Wang;Yuhui Deng;Lin Jiang;Qian Xiao;Yijing Guo;Yong Tang;Chunxia Huang - 通讯作者:
Chunxia Huang
Convergence analysis of vector extended locally optimal block preconditioned extended conjugate gradient method for computing extreme eigenvalues
计算极值特征值的矢量扩展局部最优块预条件扩展共轭梯度法的收敛性分析
- DOI:
10.1002/nla.2445 - 发表时间:
2020-04 - 期刊:
- 影响因子:4.3
- 作者:
Peter Benner;Xin Liang - 通讯作者:
Xin Liang
Xin Liang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xin Liang', 18)}}的其他基金
RII Track-4: NSF: Scalable MPI with Adaptive Compression for GPU-based Computing Systems
RII Track-4:NSF:适用于基于 GPU 的计算系统的具有自适应压缩的可扩展 MPI
- 批准号:
2327266 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Topology-Aware Data Compression for Scientific Analysis and Visualization
合作研究:OAC 核心:用于科学分析和可视化的拓扑感知数据压缩
- 批准号:
2313122 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: Elements: ProDM: Developing A Unified Progressive Data Management Library for Exascale Computational Science
协作研究:要素:ProDM:为百亿亿次计算科学开发统一的渐进式数据管理库
- 批准号:
2311756 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CRII: OAC: Enabling Quantities-of-Interest Error Control for Trust-Driven Lossy Compression
CRII:OAC:为信任驱动的有损压缩启用感兴趣数量错误控制
- 批准号:
2330367 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Pilot: Research Workforce Development for Deep Learning Systems in Advanced GPU Cyberinfrastructure
协作研究:网络培训:试点:高级 GPU 网络基础设施中深度学习系统的研究人员开发
- 批准号:
2330364 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Pilot: Research Workforce Development for Deep Learning Systems in Advanced GPU Cyberinfrastructure
协作研究:网络培训:试点:高级 GPU 网络基础设施中深度学习系统的研究人员开发
- 批准号:
2230098 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
相似国自然基金
Z8-12:OH和Z8-14:OAc分别维持梨小食心虫和李小食心虫性诱剂特异性的分子基础
- 批准号:32160636
- 批准年份:2021
- 资助金额:35.00 万元
- 项目类别:地区科学基金项目
Z8-12:OH和Z8-14:OAc分别维持梨小食心虫和李小食心虫性诱剂特异性的分子基础
- 批准号:
- 批准年份:2021
- 资助金额:35 万元
- 项目类别:地区科学基金项目
亚硝酰钌配合物[Ru(OAc)(2mqn)2NO]的光异构反应机理研究
- 批准号:21603131
- 批准年份:2016
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
机械化学条件下Mn(OAc)3促进的自由基串联反应研究
- 批准号:21242013
- 批准年份:2012
- 资助金额:10.0 万元
- 项目类别:专项基金项目
相似海外基金
Collaborative Research: OAC Core: An Integrated Framework for Enabling Temporal-Reliable Quantum Learning on NISQ-era Devices
合作研究:OAC Core:在 NISQ 时代设备上实现时间可靠的量子学习的集成框架
- 批准号:
2311950 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: An Integrated Framework for Enabling Temporal-Reliable Quantum Learning on NISQ-era Devices
合作研究:OAC Core:在 NISQ 时代设备上实现时间可靠的量子学习的集成框架
- 批准号:
2311949 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CRII: OAC: Enabling Quantities-of-Interest Error Control for Trust-Driven Lossy Compression
CRII:OAC:为信任驱动的有损压缩启用感兴趣数量错误控制
- 批准号:
2330367 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Enabling Extremely Fine-grained Parallelism on Modern Many-core Architectures
合作研究:OAC Core:在现代多核架构上实现极其细粒度的并行性
- 批准号:
2107283 - 财政年份:2021
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Enabling Extremely Fine-grained Parallelism on Modern Many-core Architectures
合作研究:OAC Core:在现代多核架构上实现极其细粒度的并行性
- 批准号:
2107548 - 财政年份:2021
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant