Support for U.S. Doctoral Students to Participate in the Annual Artificial Intelligence in Education (AIED) and co-located Educational Data Mining (EDM) Conferences

支持美国博士生参加年度教育人工智能 (AIED) 和同期举办的教育数据挖掘 (EDM) 会议

基本信息

  • 批准号:
    2225091
  • 负责人:
  • 金额:
    $ 2.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-06-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

The United States has historically been the global leader in the field of artificial intelligence in education (AIED), or ways to use computerized artificial intelligence to enhance teaching and learning in contexts ranging from children learning math in school, to soldiers learning highly technical jobs in the US military. The preeminent conference in this field is the AIED conference; at this conference the latest research is presented and practitioners learn the state of the art techniques that allow creation of these important educational technologies. A related conference that is equally significant is the Educational Data Mining (EDM) conference, which focuses on research on big data and analytics for education. This proposal would provide partial travel support for 10 Ph.D. students from the United States, selected through a competitive process, to attend the AIED conference and/or EDM conference, present their work, and receive additional mentoring outside of their dissertation committees as part of a doctoral consortium. The intellectual merit of the work rests on the studies the graduate students submit to be considered for participation in the early career track of the conference; this work is then enhanced by guidance from world-class mentors who meet with the students in a structured format to improve their research. The broader impact includes the career impact on the twenty selected students, especially since promising graduate students whose advisors may not have funding to send them to the conference can still be included, and their work can be showcased and improved. Possible long-term broader impacts include building the field of artificial intelligence in education and data analytics researchers and thus eventually, improving the quality of education.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
历史上,美国在教育人工智能(AIED)领域一直处于全球领先地位,即使用计算机化人工智能来增强教学和学习的方法,从儿童在学校学习数学到士兵在战场上学习高技术工作。美国军方。该领域最杰出的会议是 AIED 会议;在这次会议上,展示了最新的研究成果,实践者学习了最先进的技术,从而可以创造这些重要的教育技术。一个同样重要的相关会议是教育数据挖掘 (EDM) 会议,该会议重点关注教育大数据和分析的研究。该提案将为 10 名博士提供部分旅费支持。通过竞争过程选出的来自美国的学生参加 AIED 会议和/或 EDM 会议,展示他们的作品,并作为博士联盟的一部分在论文委员会之外接受额外的指导。这项工作的智力价值取决于研究生提交的研究成果,以考虑参与会议的早期职业轨道;然后,这项工作得到了世界级导师的指导,他们以结构化的形式与学生会面,以改进他们的研究。更广泛的影响包括对二十名入选学生的职业影响,特别是因为导师可能没有资金派他们参加会议的有前途的研究生仍然可以被包括在内,并且他们的工作可以得到展示和改进。可能的长期更广泛影响包括在教育和数据分析研究人员中建立人工智能领域,从而最终提高教育质量。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和知识进行评估,被认为值得支持。更广泛的影响审查标准。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Automatic Short Math Answer Grading via In-context Meta-learning
通过上下文元学习自动对简短数学答案进行评分
Improving Automated Assessment and Feedback for Student Open-responses in Mathematics
改进学生数学开放式回答的自动评估和反馈
  • DOI:
    10.3390/app14114532
  • 发表时间:
    2024-09-13
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sami Baral
  • 通讯作者:
    Sami Baral
Exploring Common Trends in Online Educational Experiments
探索在线教育实验的共同趋势
Process-BERT: A Framework for Representation Learning on Educational Process Data
Process-BERT:教育过程数据表示学习框架
  • DOI:
  • 发表时间:
    2022-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Scarlatos, Alexander;Brinton, Christopher;Lan, Andrew
  • 通讯作者:
    Lan, Andrew
Identifying Explanations Within Student-Tutor Chat Logs
识别学生与导师聊天日志中的解释
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Neil Heffernan其他文献

Written feedback in Japanese EFL classrooms: A focus on content and organization
日本英语课堂的书面反馈:注重内容和组织
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Neil Heffernan; Junko Otoshi;Yoshitaka Kaneko
  • 通讯作者:
    Yoshitaka Kaneko
Using Criterion as a self-study writing tool
使用Criterion作为自学写作工具
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Junko Otoshi;Neil Heffernan; Yoshitaka Kaneko
  • 通讯作者:
    Yoshitaka Kaneko
The influence of goalorientation,past language studies,overseas experiences,and gender differences on Japanese EFL learners'beliefs,anxiety,andbehaviors.
目标导向、过去的语言学习、海外经历和性别差异对日本英语学习者的信念、焦虑和行为的影响。
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Akira Nakayama;Hiroyuki Matsumoto;Neil Heffernan;&Tomohito Hiromori
  • 通讯作者:
    &Tomohito Hiromori
EMNLP 2014 The 2014 Conference on Empirical Methods In Natural Language Processing Workshop on Modeling Large Scale Social Interaction In Massively Open Online Courses
EMNLP 2014 2014 年自然语言处理实证方法会议大规模开放在线课程中大规模社交互动建模研讨会
  • DOI:
    10.1016/j.epsr.2021.107477
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Carolyn Rosé;George Siemens;Hua Ai;Ryan Baker;Kristy Boyer;E. Brunskill;Brian Butler;B. Di;Eugênio;Jana Diesner;D. Gašević;Neil Heffernan;Worcester Polytechnic;Lillian Lee;Alice Oh;Korea;Mari Ostendorf;Keith Sawyer;S. B. Shum;Stephanie Teasley;Chong Wang;Jason D Williams;A. Wise;Simon Fraser University;Tanmay Sinha;Patrick Jermann;Nan Li;P. Dillenbourg;Marius Kloft;Felix Stiehler;Zhilin Zheng;Niels;Seungwhan Moon;Saloni Potdar;Lara Martin;Carolyn Rosé;Mike Sharkey;Robert Sanders;Bussaba Amnueypornsakul;Suma Bhat;Phakpoom Chinprutthiwong;Niels Pinkwart;A. Wise;A. Wise;S. N. Zhao;J. Mar;F. Hsiao
  • 通讯作者:
    F. Hsiao
Automated Feedback for Student Math Responses Based on Multi-Modality and Fine-Tuning
基于多模态和微调的学生数学反应自动反馈

Neil Heffernan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Neil Heffernan', 18)}}的其他基金

Using ASSISTments for College Math: An Evaluation of the Effectiveness of Supports and Transferability of Findings
将 ASSISTments 用于大学数学:支持有效性和结果可转移性的评估
  • 批准号:
    2215842
  • 财政年份:
    2023
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Common Error Diagnostics and Support in Short-answer Math Questions
合作研究:简答数学问题中的常见错误诊断和支持
  • 批准号:
    2118725
  • 财政年份:
    2021
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
REU Site: Leveraging The Learning Sciences & Technologies to Enhance Education and Learning in Secondary Schools
REU 网站:利用学习科学
  • 批准号:
    1950683
  • 财政年份:
    2020
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Student Affect detection and Intervention with Teachers in the Loop
合作研究:学生情绪检测和与教师的干预
  • 批准号:
    1917808
  • 财政年份:
    2019
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Precision Learning: Data-Driven Experimentation of Learning Theories using Internet-of-Videos
协作研究:精准学习:使用视频互联网进行数据驱动的学习理论实验
  • 批准号:
    1940236
  • 财政年份:
    2019
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: Cyber Infrastructure for Shared Algorithmic and Experimental Research in Online Learning
协作研究:框架:在线学习中共享算法和实验研究的网络基础设施
  • 批准号:
    1931523
  • 财政年份:
    2019
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
Support for Doctoral Students from U.S. Universities to Attend the 11th International Conference on Educational Data Mining (EDM 2018)
支持美国高校博士生参加第十一届教育数据挖掘国际会议(EDM 2018)
  • 批准号:
    1840771
  • 财政年份:
    2018
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
Putting Teachers in the Driver's Seat: Using Machine Learning to Personalize Interactions with Students (DRIVER-SEAT)
让教师掌握主动权:利用机器学习实现与学生的个性化互动 (DRIVER-SEAT)
  • 批准号:
    1822830
  • 财政年份:
    2018
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
Personalizing Mathematics to Maximize Relevance and Skill for Tomorrow's STEM Workforce
个性化数学,最大限度地提高未来 STEM 劳动力的相关性和技能
  • 批准号:
    1759229
  • 财政年份:
    2018
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
CIF21 DIBBs: PD: Enhancing and Personalizing Educational Resources through Tools for Experimentation
CIF21 DIBB:PD:通过实验工具增强和个性化教育资源
  • 批准号:
    1724889
  • 财政年份:
    2017
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant

相似国自然基金

让我们一起线上购物吧!探究影响消费者协同购物效果的因素及其作用机理
  • 批准号:
    72372112
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
因“我们”而创新-组织认同对员工创新行为的促进和抑制过程研究
  • 批准号:
    71872135
  • 批准年份:
    2018
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目
当前对星团性质的新见解及其它们深远的影响- - 我们通常认为的单族恒星观念被终结了吗?
  • 批准号:
    11373010
  • 批准年份:
    2013
  • 资助金额:
    90.0 万元
  • 项目类别:
    面上项目
在我们的门前发掘化石——利用中国即将开展的巡天来研究银河系的演化
  • 批准号:
    11043005
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目
寻找我们的祖先
  • 批准号:
    40320001
  • 批准年份:
    2003
  • 资助金额:
    40.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

UTRGV International Conference on Health Disparities: Treatment and Recovery from Opioid and Alcohol Use Disorders and Related Comorbidities (ICHD-Recover)
UTRGV 健康差异国际会议:阿片类药物和酒精使用障碍及相关合并症的治疗和康复 (ICHD-Recover)
  • 批准号:
    10469128
  • 财政年份:
    2022
  • 资助金额:
    $ 2.5万
  • 项目类别:
Translation and Integration of Genomics is Essential to Doctoral Nursing: "TIGER"
基因组学的翻译和整合对于博士护理至关重要:“TIGER”
  • 批准号:
    10404682
  • 财政年份:
    2021
  • 资助金额:
    $ 2.5万
  • 项目类别:
Translation and Integration of Genomics is Essential to Doctoral Nursing: "TIGER"
基因组学的翻译和整合对于博士护理至关重要:“TIGER”
  • 批准号:
    10595663
  • 财政年份:
    2021
  • 资助金额:
    $ 2.5万
  • 项目类别:
Translation and Integration of Genomics is Essential to Doctoral Nursing: "TIGER"
基因组学的翻译和整合对于博士护理至关重要:“TIGER”
  • 批准号:
    10170567
  • 财政年份:
    2021
  • 资助金额:
    $ 2.5万
  • 项目类别:
"Maternal Outcome Monitoring and Support (MOMS) - A mHealth symptom self-monitoring and decision support system to reduce racial and ethnic disparities in postpartum outcomes
“孕产妇结局监测和支持 (MOMS) - 移动医疗症状自我监测和决策支持系统,可减少产后结局中的种族和民族差异
  • 批准号:
    10402792
  • 财政年份:
    2021
  • 资助金额:
    $ 2.5万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了