Collaborative Research: Common Error Diagnostics and Support in Short-answer Math Questions

合作研究:简答数学问题中的常见错误诊断和支持

基本信息

  • 批准号:
    2118725
  • 负责人:
  • 金额:
    $ 23.93万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

One important way to help struggling students improve in math is to deliver personalized support that addresses their specific weaknesses. Many math questions have common wrong answers (CWAs) that correspond to specific errors students make during their answering process, caused by misconceptions or a general lack of knowledge on certain math skills. To date, CWA identification and support remains a labor-intensive process at a limited scale because it requires significant effort by teachers and/or domain experts. In this project, the investigators will develop artificial intelligence (AI)-based mechanisms that can automatically identify CWAs from students’ answers to short-answer math questions and diagnose errors. Once these errors are identified, the investigators will enlist the help of teachers to design feedback and support mechanisms in various formats such as textual feedback messages and short videos. In turn, the investigators will integrate these diagnosis and effective support mechanisms into a teacher interface to support them in either classrooms or online learning environments. Overall, this project has the potential to lead to i) better understanding of CWAs in math questions and the underlying errors and ii) effective CWA support mechanisms for each error type. The project will be grounded in ASSISTments, a free web-based learning platform, therefore directly benefiting the 500,000 US students and 20,000 teachers using it and potentially an even larger number of students and teachers through the dissemination of research findings. This project consists of four main research activities. First, the investigators will leverage math expression embedding methods to learn the representations of student errors by clustering CWAs across multiple questions in the latent math expression embedding vector space. These learned representations will enable the automated diagnosis of student errors in real time. Second, the investigators will develop new knowledge tracing algorithms that go beyond typical correctness analysis and analyze the full answer each student submits to each question. These algorithms will enable the automated tracking of students’ progress in correcting their errors. Third, the investigators will crowdsource multiple types of student support from teachers and integrate both student error diagnostics and support mechanisms into the existing ASSISTments teacher interface. This interface will provide feedback to teachers on which students are struggling in real time and recommend a support, which the teacher can either adopt and customize or reject and create their own support instead. Fourth, the investigators will conduct a randomized controlled trial to evaluate the effectiveness of each support mechanism in helping students correct their errors. This experiment will identify which support mechanisms are most effective at helping students correct each error type and improving learning outcomes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
帮助有困难的学生提高数学成绩的一个重要方法是提供个性化支持,解决他们的具体弱点。许多数学问题都有常见的错误答案 (CWA),这些错误答案与学生在回答过程中因误解或普遍缺乏而犯的具体错误相对应。迄今为止,CWA 识别和支持仍然是一个规模有限的劳动密集型过程,因为它需要教师和/或领域专家的巨大努力。在该项目中,研究人员将开发人工智能 (AI)。基于可自动识别 CWA 的机制一旦发现这些错误,研究人员将寻求教师的帮助,设计各种形式的反馈和支持机制,例如文字反馈信息和短视频。研究人员将把这些诊断和有效的支持机制整合到教师界面中,以在课堂或在线学习环境中为他们提供支持。总体而言,该项目有可能导致 i) 更好地理解数学问题中的 CWA 和潜在错误,以及 ii)。针对每种错误类型的有效 CWA 支持机制。该项目将以 ASSISTments 为基础,这是一个免费的网络学习平台,因此使用该平台的 500,000 名美国学生和 20,000 名教师将直接受益,并可能通过研究成果的传播使更多的学生和教师受益。研究人员将利用数学表达式嵌入方法,通过在潜在数学表达式嵌入向量空间中的多个问题上对 CWA 进行聚类,来学习学生错误的表示。其次,研究人员将开发新的知识追踪算法,超越典型的正确性分析,并分析每个学生提交的每个问题的完整答案。第三,研究人员将从教师那里众包多种类型的学生支持,并将学生错误诊断和支持机制集成到现有的 ASSISTments 教师界面中。该界面将为教师提供学生实际遇到困难的反馈。时间并推荐一个支持,老师第四,研究人员将进行随机对照试验,以评估每种支持机制在帮助学生纠正错误方面的有效性。帮助学生纠正每种错误类型并提高学习成果。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Comparing Different Approaches to Generating Mathematics Explanations Using Large Language Models
比较使用大型语言模型生成数学解释的不同方法
  • DOI:
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Prihar, Ethan;Lee, Morgan;Hopman, Mia;Kalai, Adam T.;Vempala, Sofia;Wang, Allison;Wickline, Gabriel;Murray, Aly;Heffernan, Neil
  • 通讯作者:
    Heffernan, Neil
How Common are Common Wrong Answers? Crowdsourcing Remediation at Scale.
常见错误答案有多常见?
  • DOI:
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gurung, Ashish;Lee, Morgan;Baral, Sami;Sales, Adam;Vanacore, Kirk;McReynolds, Andrew;Kreisberg, Hilary;Heffernan, Cristina;Haim, Aaron;Heffernan, Neil
  • 通讯作者:
    Heffernan, Neil
How to Open Science: A Principle and Reproducibility Review of the Learning Analytics and Knowledge Conference
如何开放科学:学习分析和知识会议的原理和可重复性回顾
Assessing the ality of Large Language Models in Generating Mathematics Explanations
评估大型语言模型在生成数学解释中的能力
  • DOI:
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wang, Allison;Prihar, Ethan;Heffernan, Neil
  • 通讯作者:
    Heffernan, Neil
A Bandit You Can Trust
值得信赖的强盗
  • DOI:
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Prihar, Ethan;Sales, Adam;Heffernan, Neil
  • 通讯作者:
    Heffernan, Neil
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Neil Heffernan其他文献

Written feedback in Japanese EFL classrooms: A focus on content and organization
日本英语课堂的书面反馈:注重内容和组织
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Neil Heffernan; Junko Otoshi;Yoshitaka Kaneko
  • 通讯作者:
    Yoshitaka Kaneko
Using Criterion as a self-study writing tool
使用Criterion作为自学写作工具
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Junko Otoshi;Neil Heffernan; Yoshitaka Kaneko
  • 通讯作者:
    Yoshitaka Kaneko
The influence of goalorientation,past language studies,overseas experiences,and gender differences on Japanese EFL learners'beliefs,anxiety,andbehaviors.
目标导向、过去的语言学习、海外经历和性别差异对日本英语学习者的信念、焦虑和行为的影响。
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Akira Nakayama;Hiroyuki Matsumoto;Neil Heffernan;&Tomohito Hiromori
  • 通讯作者:
    &Tomohito Hiromori
EMNLP 2014 The 2014 Conference on Empirical Methods In Natural Language Processing Workshop on Modeling Large Scale Social Interaction In Massively Open Online Courses
EMNLP 2014 2014 年自然语言处理实证方法会议大规模开放在线课程中大规模社交互动建模研讨会
  • DOI:
    10.1016/j.epsr.2021.107477
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Carolyn Rosé;George Siemens;Hua Ai;Ryan Baker;Kristy Boyer;E. Brunskill;Brian Butler;B. Di;Eugênio;Jana Diesner;D. Gašević;Neil Heffernan;Worcester Polytechnic;Lillian Lee;Alice Oh;Korea;Mari Ostendorf;Keith Sawyer;S. B. Shum;Stephanie Teasley;Chong Wang;Jason D Williams;A. Wise;Simon Fraser University;Tanmay Sinha;Patrick Jermann;Nan Li;P. Dillenbourg;Marius Kloft;Felix Stiehler;Zhilin Zheng;Niels;Seungwhan Moon;Saloni Potdar;Lara Martin;Carolyn Rosé;Mike Sharkey;Robert Sanders;Bussaba Amnueypornsakul;Suma Bhat;Phakpoom Chinprutthiwong;Niels Pinkwart;A. Wise;A. Wise;S. N. Zhao;J. Mar;F. Hsiao
  • 通讯作者:
    F. Hsiao
Automated Feedback for Student Math Responses Based on Multi-Modality and Fine-Tuning
基于多模态和微调的学生数学反应自动反馈

Neil Heffernan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Neil Heffernan', 18)}}的其他基金

Using ASSISTments for College Math: An Evaluation of the Effectiveness of Supports and Transferability of Findings
将 ASSISTments 用于大学数学:支持有效性和结果可转移性的评估
  • 批准号:
    2215842
  • 财政年份:
    2023
  • 资助金额:
    $ 23.93万
  • 项目类别:
    Standard Grant
Support for U.S. Doctoral Students to Participate in the Annual Artificial Intelligence in Education (AIED) and co-located Educational Data Mining (EDM) Conferences
支持美国博士生参加年度教育人工智能 (AIED) 和同期举办的教育数据挖掘 (EDM) 会议
  • 批准号:
    2225091
  • 财政年份:
    2022
  • 资助金额:
    $ 23.93万
  • 项目类别:
    Standard Grant
REU Site: Leveraging The Learning Sciences & Technologies to Enhance Education and Learning in Secondary Schools
REU 网站:利用学习科学
  • 批准号:
    1950683
  • 财政年份:
    2020
  • 资助金额:
    $ 23.93万
  • 项目类别:
    Standard Grant
Collaborative Research: Student Affect detection and Intervention with Teachers in the Loop
合作研究:学生情绪检测和与教师的干预
  • 批准号:
    1917808
  • 财政年份:
    2019
  • 资助金额:
    $ 23.93万
  • 项目类别:
    Standard Grant
Collaborative Research: Precision Learning: Data-Driven Experimentation of Learning Theories using Internet-of-Videos
协作研究:精准学习:使用视频互联网进行数据驱动的学习理论实验
  • 批准号:
    1940236
  • 财政年份:
    2019
  • 资助金额:
    $ 23.93万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: Cyber Infrastructure for Shared Algorithmic and Experimental Research in Online Learning
协作研究:框架:在线学习中共享算法和实验研究的网络基础设施
  • 批准号:
    1931523
  • 财政年份:
    2019
  • 资助金额:
    $ 23.93万
  • 项目类别:
    Standard Grant
Support for Doctoral Students from U.S. Universities to Attend the 11th International Conference on Educational Data Mining (EDM 2018)
支持美国高校博士生参加第十一届教育数据挖掘国际会议(EDM 2018)
  • 批准号:
    1840771
  • 财政年份:
    2018
  • 资助金额:
    $ 23.93万
  • 项目类别:
    Standard Grant
Putting Teachers in the Driver's Seat: Using Machine Learning to Personalize Interactions with Students (DRIVER-SEAT)
让教师掌握主动权:利用机器学习实现与学生的个性化互动 (DRIVER-SEAT)
  • 批准号:
    1822830
  • 财政年份:
    2018
  • 资助金额:
    $ 23.93万
  • 项目类别:
    Standard Grant
Personalizing Mathematics to Maximize Relevance and Skill for Tomorrow's STEM Workforce
个性化数学,最大限度地提高未来 STEM 劳动力的相关性和技能
  • 批准号:
    1759229
  • 财政年份:
    2018
  • 资助金额:
    $ 23.93万
  • 项目类别:
    Standard Grant
CIF21 DIBBs: PD: Enhancing and Personalizing Educational Resources through Tools for Experimentation
CIF21 DIBB:PD:通过实验工具增强和个性化教育资源
  • 批准号:
    1724889
  • 财政年份:
    2017
  • 资助金额:
    $ 23.93万
  • 项目类别:
    Standard Grant

相似国自然基金

西双版纳常见桑寄生和寄主水力结构和功能的比较研究
  • 批准号:
    32301308
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
适龄儿童常见二类疫苗接种及时性与抗体滴度差异和VPD发病的层次贝叶斯时空模型研究
  • 批准号:
    82360666
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
基于血浆cfDNA片段组学特征的液体活检技术在常见消化道肿瘤筛查中的应用研究
  • 批准号:
    82373664
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
血浆ctDNA甲基化液体活检技术在常见消化道肿瘤联合筛查中的应用研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: MTM1: Microbial Genomic, Transcriptomic, and Survival Response to Common Built Environment Lighting
合作研究:MTM1:微生物基因组、转录组和对常见建筑环境照明的生存反应
  • 批准号:
    2401220
  • 财政年份:
    2023
  • 资助金额:
    $ 23.93万
  • 项目类别:
    Standard Grant
Collaborative Research: GCR: Common Pool Resource Theory as a Scalable Framework for Catalyzing Stakeholder-Driven Solutions to the Freshwater Salinization Syndrome
合作研究:GCR:公共池资源理论作为催化利益相关者驱动的淡水盐化综合症解决方案的可扩展框架
  • 批准号:
    2312326
  • 财政年份:
    2023
  • 资助金额:
    $ 23.93万
  • 项目类别:
    Continuing Grant
Investigating the role of apoptosis-resistance and the tumor environment on development and maintenance of sacrococcygeal teratomas
研究细胞凋亡抗性和肿瘤环境对骶尾部畸胎瘤发生和维持的作用
  • 批准号:
    10749797
  • 财政年份:
    2023
  • 资助金额:
    $ 23.93万
  • 项目类别:
Integration of a collaborative care model for mental health services into HIV care for pregnant and postpartum women in Kenya (the Tunawiri Study)
将心理健康服务协作护理模式纳入肯尼亚孕妇和产后妇女的艾滋病毒护理(图纳维里研究)
  • 批准号:
    10676019
  • 财政年份:
    2023
  • 资助金额:
    $ 23.93万
  • 项目类别:
UW Practice-based Suicide Prevention Research Center
华盛顿大学基于实践的自杀预防研究中心
  • 批准号:
    10575206
  • 财政年份:
    2023
  • 资助金额:
    $ 23.93万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了