Collaborative Research: Student Affect detection and Intervention with Teachers in the Loop

合作研究:学生情绪检测和与教师的干预

基本信息

  • 批准号:
    1917808
  • 负责人:
  • 金额:
    $ 24.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

In recent years, there has been increasing effort to integrate modern artificial intelligence technologies into adaptive learning systems to enhance student learning. One key emerging area is in the use of models that can recognize student emotion in context, referred to as affective states. These models typically take the form of machine learning classifiers that recognize affect from the student's interaction with an online learning system. In this project, the investigators will develop adaptive learning systems that actively enlist the help of teachers to develop better student affect detection methods. In return, the system will support the work of teachers by providing them reports on the affective state of each student in real-time. The system will then learn to mimic teachers' choices of intervention methods for disengaged students in order to deliver interventions automatically. Overall, this project is anticipated to lead to i) better understanding of how to leverage and align to teachers' perspectives in detecting and responding to affect, and ii) enhanced intervention by both teachers and automated software that re-engages students and improves learning outcomes.This project will be organized into three phases. First, the investigators will employ active machine learning methods to ask teachers to observe specific students when they have a break in classroom activity; these methods can improve the quality of the affect detectors by providing data on the students whose affective states are most informative to improve the classifier, rather than the standard method of developing these detectors by observing students in round-robin fashion. Second, the investigators will incorporate richer data types (specifically, self-reported confidence ratings of affect labels) into the detectors to improve their quality. These self-reported confidence ratings reflect how uncertain humans are about specific affect judgements, which will be compared to the uncertainty of classifiers, to possibly reveal insights into student affect, such as what the properties are of situations where affect is ambiguous. Third, the investigators will use crowdsourcing to solicit ideas from teachers as to when specific affect interventions will be appropriate for specific students, and will develop automated intervention methods using reinforcement learning. These automated intervention methods are highly scalable since they can enable the system to take the actions the teacher would take to intervene to support different students experiencing negative affect at the same time. This intervention system will be tested in real classrooms as students learn within ASSISTments, a free web-based learning platform used by over 60,000 students a year. If successful, this project will lead to new scientific discoveries on the dynamics of affect and new technology for scalable student affect detection and intervention.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
近年来,人们越来越努力地将现代人工智能技术整合到自适应学习系统中以增强学生的学习。一个关键的新兴领域是使用可以识别情境中学生情绪(称为情感状态)的模型。这些模型通常采用机器学习分类器的形式,识别学生与在线学习系统交互的影响。在这个项目中,研究人员将开发自适应学习系统,积极争取教师的帮助,以开发更好的学生情感检测方法。作为回报,该系统将通过向教师提供每个学生的实时情感状态报告来支持教师的工作。然后,系统将学习模仿教师对注意力不集中的学生选择的干预方法,以便自动进行干预。总体而言,该项目预计将导致 i) 更好地理解如何利用和调整教师的观点来检测和应对情感,以及 ii) 加强教师和自动化软件的干预,重新吸引学生并提高学习成果.该项目将分为三个阶段。首先,调查人员将采用主动机器学习方法,要求教师在课堂活动休息时观察特定学生;这些方法可以通过提供情感状态对改进分类器信息最丰富的学生的数据来提高情感检测器的质量,而不是通过以循环方式观察学生来开发这些检测器的标准方法。其次,研究人员将把更丰富的数据类型(特别是情感标签的自我报告置信度评级)纳入检测器中,以提高其质量。这些自我报告的置信度反映了人类对特定情感判断的不确定性,这将与分类器的不确定性进行比较,以可能揭示对学生情感的洞察,例如情感不明确的情况下的属性是什么。第三,研究人员将利用众包向教师征求关于何时适合特定学生的特定情感干预的想法,并将使用强化学习开发自动干预方法。这些自动干预方法具有高度可扩展性,因为它们可以使系统采取教师采取的干预措施,以支持同时经历负面影响的不同学生。该干预系统将在真实的课堂上进行测试,学生可以在 ASSISTments 中学习,ASSISTments 是一个免费的网络学习平台,每年有超过 60,000 名学生使用。如果成功,该项目将带来关于情感动态的新科学发现以及可扩展的学生情感检测和干预的新技术。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响进行评估,被认为值得支持审查标准。

项目成果

期刊论文数量(22)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Investigating the Impact of Skill-Related Videos on Online Learning
调查技能相关视频对在线学习的影响
Process-BERT: A Framework for Representation Learning on Educational Process Data
Process-BERT:教育过程数据表示学习框架
Automatic Short Math Answer Grading via In-context Meta-learning
通过上下文元学习自动对简短数学答案进行评分
Automated Scoring of Image-based responses to Open-ended mathematics question.
对开放式数学问题基于图像的回答的自动评分。
Effective Evaluation of Online Learning Interventions with Surrogate Measures
使用替代措施有效评估在线学习干预措施
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Neil Heffernan其他文献

Written feedback in Japanese EFL classrooms: A focus on content and organization
日本英语课堂的书面反馈:注重内容和组织
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Neil Heffernan; Junko Otoshi;Yoshitaka Kaneko
  • 通讯作者:
    Yoshitaka Kaneko
Using Criterion as a self-study writing tool
使用Criterion作为自学写作工具
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Junko Otoshi;Neil Heffernan; Yoshitaka Kaneko
  • 通讯作者:
    Yoshitaka Kaneko
The influence of goalorientation,past language studies,overseas experiences,and gender differences on Japanese EFL learners'beliefs,anxiety,andbehaviors.
目标导向、过去的语言学习、海外经历和性别差异对日本英语学习者的信念、焦虑和行为的影响。
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Akira Nakayama;Hiroyuki Matsumoto;Neil Heffernan;&Tomohito Hiromori
  • 通讯作者:
    &Tomohito Hiromori
EMNLP 2014 The 2014 Conference on Empirical Methods In Natural Language Processing Workshop on Modeling Large Scale Social Interaction In Massively Open Online Courses
EMNLP 2014 2014 年自然语言处理实证方法会议大规模开放在线课程中大规模社交互动建模研讨会
  • DOI:
    10.1016/j.epsr.2021.107477
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Carolyn Rosé;George Siemens;Hua Ai;Ryan Baker;Kristy Boyer;E. Brunskill;Brian Butler;B. Di;Eugênio;Jana Diesner;D. Gašević;Neil Heffernan;Worcester Polytechnic;Lillian Lee;Alice Oh;Korea;Mari Ostendorf;Keith Sawyer;S. B. Shum;Stephanie Teasley;Chong Wang;Jason D Williams;A. Wise;Simon Fraser University;Tanmay Sinha;Patrick Jermann;Nan Li;P. Dillenbourg;Marius Kloft;Felix Stiehler;Zhilin Zheng;Niels;Seungwhan Moon;Saloni Potdar;Lara Martin;Carolyn Rosé;Mike Sharkey;Robert Sanders;Bussaba Amnueypornsakul;Suma Bhat;Phakpoom Chinprutthiwong;Niels Pinkwart;A. Wise;A. Wise;S. N. Zhao;J. Mar;F. Hsiao
  • 通讯作者:
    F. Hsiao
Automated Feedback for Student Math Responses Based on Multi-Modality and Fine-Tuning
基于多模态和微调的学生数学反应自动反馈

Neil Heffernan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Neil Heffernan', 18)}}的其他基金

Using ASSISTments for College Math: An Evaluation of the Effectiveness of Supports and Transferability of Findings
将 ASSISTments 用于大学数学:支持有效性和结果可转移性的评估
  • 批准号:
    2215842
  • 财政年份:
    2023
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Standard Grant
Support for U.S. Doctoral Students to Participate in the Annual Artificial Intelligence in Education (AIED) and co-located Educational Data Mining (EDM) Conferences
支持美国博士生参加年度教育人工智能 (AIED) 和同期举办的教育数据挖掘 (EDM) 会议
  • 批准号:
    2225091
  • 财政年份:
    2022
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Common Error Diagnostics and Support in Short-answer Math Questions
合作研究:简答数学问题中的常见错误诊断和支持
  • 批准号:
    2118725
  • 财政年份:
    2021
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Standard Grant
REU Site: Leveraging The Learning Sciences & Technologies to Enhance Education and Learning in Secondary Schools
REU 网站:利用学习科学
  • 批准号:
    1950683
  • 财政年份:
    2020
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Precision Learning: Data-Driven Experimentation of Learning Theories using Internet-of-Videos
协作研究:精准学习:使用视频互联网进行数据驱动的学习理论实验
  • 批准号:
    1940236
  • 财政年份:
    2019
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: Cyber Infrastructure for Shared Algorithmic and Experimental Research in Online Learning
协作研究:框架:在线学习中共享算法和实验研究的网络基础设施
  • 批准号:
    1931523
  • 财政年份:
    2019
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Standard Grant
Support for Doctoral Students from U.S. Universities to Attend the 11th International Conference on Educational Data Mining (EDM 2018)
支持美国高校博士生参加第十一届教育数据挖掘国际会议(EDM 2018)
  • 批准号:
    1840771
  • 财政年份:
    2018
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Standard Grant
Putting Teachers in the Driver's Seat: Using Machine Learning to Personalize Interactions with Students (DRIVER-SEAT)
让教师掌握主动权:利用机器学习实现与学生的个性化互动 (DRIVER-SEAT)
  • 批准号:
    1822830
  • 财政年份:
    2018
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Standard Grant
Personalizing Mathematics to Maximize Relevance and Skill for Tomorrow's STEM Workforce
个性化数学,最大限度地提高未来 STEM 劳动力的相关性和技能
  • 批准号:
    1759229
  • 财政年份:
    2018
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Standard Grant
CIF21 DIBBs: PD: Enhancing and Personalizing Educational Resources through Tools for Experimentation
CIF21 DIBB:PD:通过实验工具增强和个性化教育资源
  • 批准号:
    1724889
  • 财政年份:
    2017
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Standard Grant

相似国自然基金

面向小样本教育场景的学生知识追踪方法研究
  • 批准号:
    62307006
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
湿热地区高校宿舍多物种霉菌共存对学生过敏性鼻炎的健康影响机理研究
  • 批准号:
    52308086
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
改性卤氧化铋基纳米阵列微流控-光电化学生物传感器构建与肝癌标志物检测应用研究
  • 批准号:
    22304068
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
混合课堂学生认知投入量化机制与干预策略研究
  • 批准号:
    62377025
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基础学科拔尖学生发展及其影响机制的追踪研究
  • 批准号:
    72304231
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: The impact of instruction on student thinking about measurement in classical and quantum mechanics experiments
合作研究:教学对学生思考经典和量子力学实验中的测量的影响
  • 批准号:
    2336135
  • 财政年份:
    2024
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Characterizing and empowering student success when traversing the academic help landscape
协作研究:在穿越学术帮助景观时描述并赋予学生成功的能力
  • 批准号:
    2336804
  • 财政年份:
    2024
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Characterizing and empowering student success when traversing the academic help landscape
协作研究:在穿越学术帮助景观时描述并赋予学生成功的能力
  • 批准号:
    2336805
  • 财政年份:
    2024
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Standard Grant
Collaborative Research: The impact of instruction on student thinking about measurement in classical and quantum mechanics experiments
合作研究:教学对学生思考经典和量子力学实验中的测量的影响
  • 批准号:
    2336136
  • 财政年份:
    2024
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Standard Grant
Collaborative Research: From Courses to Careers - Addressing Ableism in Physics through Faculty-Student Partnerships
合作研究:从课程到职业——通过师生合作解决物理学能力歧视问题
  • 批准号:
    2336367
  • 财政年份:
    2024
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了