Putting Teachers in the Driver's Seat: Using Machine Learning to Personalize Interactions with Students (DRIVER-SEAT)
让教师掌握主动权:利用机器学习实现与学生的个性化互动 (DRIVER-SEAT)
基本信息
- 批准号:1822830
- 负责人:
- 金额:$ 74.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This is a project that will use machine learning to personalize messages about student homework. The project will apply technologies used by Google's Smart Reply, a functionality that uses machine learning to generate and suggest human-like email responses, to provide teachers a quick and effective way to respond to student online homework. An important part of many State standards is the need for math students to communicate their ideas through writing. With the number of schools digitizing their classrooms on the rise, teachers are inundated with student data. Teachers are often unable to review and provide feedback in an effective and timely manner. This project will help teachers be more efficient and at the same time cause more effective student learning. The Dialogue Reinforcement Infrastructure for Volitional Exploratory Research - Soliciting Effective Actions from Teachers (DRIVER-SEAT) will be designed to help teachers more efficiently and effectively communicate with students in a way that feels personalized, while supported by advances in computer science. By applying a feature similar to Google's Smart Reply in an educational setting, DRIVER-SEAT offer teachers suggestions of automated messages that can be used for more personalized feedback, thereby revolutionizing digital learning by re-incorporating teachers in an efficient and productive way. The project will enlist teachers to create DRIVER-SEAT. These teachers will use a prototype equivalent to Google's Smart Reply, to establish a library of trusted messages that teachers choose to provide their students. The methodology behind Google's Smart Reply utilizes standard sequence-to-sequence machine learning techniques to automatically generate responses, grouping them into 100 clusters (with each cluster representing a specific semantic intent), and selecting messages from these clusters to suggest to users. In a similar fashion, sequence-to-sequence deep learning techniques are used to generate and suggest messages. However, instead of communicating via email, teachers will be using these messages to provide feedback for their students' math homework. Based on student performance and system-detected affect and behavior, three appropriate feedback responses are selected to initiate interaction with each student. Cooperating teachers will help craft the library by piloting the prototype system and selecting feedback to send their students. Library development will enable machine learning to discover how to help teachers efficiently reply to their students. By implementing this technology, there is great potential to narrow the achievement gap in mathematics classrooms across the nation. This effect could then extend to science, technology, and engineering classrooms in a similar fashion. The transformative aspects of the proposed work will lead to adjustments in the way teachers and students interact in online learning environments.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将使用机器学习来个性化有关学生作业的消息。该项目将应用谷歌智能回复所使用的技术,该功能利用机器学习来生成和建议类似人类的电子邮件回复,为教师提供一种快速有效的方式来回复学生的在线作业。许多州标准的一个重要部分是数学学生需要通过写作来表达他们的想法。随着教室数字化的学校数量不断增加,教师被学生数据淹没。教师往往无法有效及时地进行审查并提供反馈。该项目将帮助教师提高效率,同时使学生学习更有效。自愿探索性研究的对话强化基础设施 - 征求教师的有效行动 (DRIVER-SEAT) 将旨在帮助教师以一种个性化的方式更高效、更有效地与学生沟通,同时得到计算机科学进步的支持。通过在教育环境中应用类似于谷歌智能回复的功能,DRIVER-SEAT 为教师提供自动消息建议,可用于更个性化的反馈,从而通过以高效且富有成效的方式重新整合教师,彻底改变数字学习。该项目将招募教师来创建 DRIVER-SEAT。这些教师将使用相当于谷歌智能回复的原型来建立教师选择向学生提供的可信消息库。 Google 的智能回复背后的方法利用标准的序列到序列机器学习技术来自动生成响应,将它们分为 100 个集群(每个集群代表一个特定的语义意图),并从这些集群中选择消息来向用户建议。以类似的方式,序列到序列深度学习技术用于生成和建议消息。然而,教师将使用这些消息来为学生的数学作业提供反馈,而不是通过电子邮件进行交流。根据学生的表现和系统检测到的情感和行为,选择三个适当的反馈响应来启动与每个学生的互动。合作教师将通过试点原型系统并选择反馈发送给学生来帮助打造图书馆。库的开发将使机器学习能够发现如何帮助教师有效地回复学生。通过实施这项技术,有很大潜力缩小全国数学课堂的成绩差距。这种效应可以以类似的方式延伸到科学、技术和工程课堂。拟议工作的变革性方面将导致教师和学生在在线学习环境中互动方式的调整。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Refusing to Try: Characterizing Early Stopout on Student Assignments
拒绝尝试:学生作业中提前停止的特征
- DOI:10.1145/3303772.3303806
- 发表时间:2019-01
- 期刊:
- 影响因子:0
- 作者:Botelho, Anthony F.;Varatharaj, Ashvini;Inwegen, Eric G.;Heffernan, Neil T.
- 通讯作者:Heffernan, Neil T.
Improving Automated Scoring of Student Open Responses in Mathematics
改进学生数学开放式回答的自动评分
- DOI:
- 发表时间:2021-06
- 期刊:
- 影响因子:0
- 作者:Baral, Sami;Botelho, Anthony;Erickson, John;Benachamardi, Priyanka;Heffernan, Neil
- 通讯作者:Heffernan, Neil
The automated grading of student open responses in mathematics
学生数学开放式回答的自动评分
- DOI:10.1145/3375462.3375523
- 发表时间:2020-03
- 期刊:
- 影响因子:0
- 作者:Erickson, John A.;Botelho, Anthony F.;McAteer, Steven;Varatharaj, Ashvini;Heffernan, Neil T.
- 通讯作者:Heffernan, Neil T.
MathBERT: A Pre-trained Language Model for General NLP Tasks in Mathematics Education
MathBERT:数学教育中一般 NLP 任务的预训练语言模型
- DOI:
- 发表时间:2021-06-02
- 期刊:
- 影响因子:0
- 作者:J. Shen;Michiharu Yamashita;Ethan Prihar;N. Heffernan;Xintao Wu;Dongwon Lee
- 通讯作者:Dongwon Lee
Automatic Short Math Answer Grading via In-context Meta-learning
通过上下文元学习自动对简短数学答案进行评分
- DOI:
- 发表时间:2022-07
- 期刊:
- 影响因子:0
- 作者:Zhang, Mengxue;Baral, Sami;Heffernan, Neil;Lan, Andrew
- 通讯作者:Lan, Andrew
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Neil Heffernan其他文献
Written feedback in Japanese EFL classrooms: A focus on content and organization
日本英语课堂的书面反馈:注重内容和组织
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Neil Heffernan; Junko Otoshi;Yoshitaka Kaneko - 通讯作者:
Yoshitaka Kaneko
Using Criterion as a self-study writing tool
使用Criterion作为自学写作工具
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Junko Otoshi;Neil Heffernan; Yoshitaka Kaneko - 通讯作者:
Yoshitaka Kaneko
The influence of goalorientation,past language studies,overseas experiences,and gender differences on Japanese EFL learners'beliefs,anxiety,andbehaviors.
目标导向、过去的语言学习、海外经历和性别差异对日本英语学习者的信念、焦虑和行为的影响。
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Akira Nakayama;Hiroyuki Matsumoto;Neil Heffernan;&Tomohito Hiromori - 通讯作者:
&Tomohito Hiromori
Automated Feedback for Student Math Responses Based on Multi-Modality and Fine-Tuning
基于多模态和微调的学生数学反应自动反馈
- DOI:
10.1145/3636555.3636860 - 发表时间:
2024-03-18 - 期刊:
- 影响因子:0
- 作者:
Hai Li;Chenglu Li;Wanli Xing;Sami Baral;Neil Heffernan - 通讯作者:
Neil Heffernan
EMNLP 2014 The 2014 Conference on Empirical Methods In Natural Language Processing Workshop on Modeling Large Scale Social Interaction In Massively Open Online Courses
EMNLP 2014 2014 年自然语言处理实证方法会议大规模开放在线课程中大规模社交互动建模研讨会
- DOI:
10.1016/j.epsr.2021.107477 - 发表时间:
2014 - 期刊:
- 影响因子:3.9
- 作者:
Carolyn Rosé;George Siemens;Hua Ai;Ryan Baker;Kristy Boyer;E. Brunskill;Brian Butler;B. Di;Eugênio;Jana Diesner;D. Gašević;Neil Heffernan;Worcester Polytechnic;Lillian Lee;Alice Oh;Korea;Mari Ostendorf;Keith Sawyer;S. B. Shum;Stephanie Teasley;Chong Wang;Jason D Williams;A. Wise;Simon Fraser University;Tanmay Sinha;Patrick Jermann;Nan Li;P. Dillenbourg;Marius Kloft;Felix Stiehler;Zhilin Zheng;Niels;Seungwhan Moon;Saloni Potdar;Lara Martin;Carolyn Rosé;Mike Sharkey;Robert Sanders;Bussaba Amnueypornsakul;Suma Bhat;Phakpoom Chinprutthiwong;Niels Pinkwart;A. Wise;A. Wise;S. N. Zhao;J. Mar;F. Hsiao - 通讯作者:
F. Hsiao
Neil Heffernan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Neil Heffernan', 18)}}的其他基金
Using ASSISTments for College Math: An Evaluation of the Effectiveness of Supports and Transferability of Findings
将 ASSISTments 用于大学数学:支持有效性和结果可转移性的评估
- 批准号:
2215842 - 财政年份:2023
- 资助金额:
$ 74.43万 - 项目类别:
Standard Grant
Support for U.S. Doctoral Students to Participate in the Annual Artificial Intelligence in Education (AIED) and co-located Educational Data Mining (EDM) Conferences
支持美国博士生参加年度教育人工智能 (AIED) 和同期举办的教育数据挖掘 (EDM) 会议
- 批准号:
2225091 - 财政年份:2022
- 资助金额:
$ 74.43万 - 项目类别:
Standard Grant
Collaborative Research: Common Error Diagnostics and Support in Short-answer Math Questions
合作研究:简答数学问题中的常见错误诊断和支持
- 批准号:
2118725 - 财政年份:2021
- 资助金额:
$ 74.43万 - 项目类别:
Standard Grant
REU Site: Leveraging The Learning Sciences & Technologies to Enhance Education and Learning in Secondary Schools
REU 网站:利用学习科学
- 批准号:
1950683 - 财政年份:2020
- 资助金额:
$ 74.43万 - 项目类别:
Standard Grant
Collaborative Research: Student Affect detection and Intervention with Teachers in the Loop
合作研究:学生情绪检测和与教师的干预
- 批准号:
1917808 - 财政年份:2019
- 资助金额:
$ 74.43万 - 项目类别:
Standard Grant
Collaborative Research: Precision Learning: Data-Driven Experimentation of Learning Theories using Internet-of-Videos
协作研究:精准学习:使用视频互联网进行数据驱动的学习理论实验
- 批准号:
1940236 - 财政年份:2019
- 资助金额:
$ 74.43万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: Cyber Infrastructure for Shared Algorithmic and Experimental Research in Online Learning
协作研究:框架:在线学习中共享算法和实验研究的网络基础设施
- 批准号:
1931523 - 财政年份:2019
- 资助金额:
$ 74.43万 - 项目类别:
Standard Grant
Support for Doctoral Students from U.S. Universities to Attend the 11th International Conference on Educational Data Mining (EDM 2018)
支持美国高校博士生参加第十一届教育数据挖掘国际会议(EDM 2018)
- 批准号:
1840771 - 财政年份:2018
- 资助金额:
$ 74.43万 - 项目类别:
Standard Grant
Personalizing Mathematics to Maximize Relevance and Skill for Tomorrow's STEM Workforce
个性化数学,最大限度地提高未来 STEM 劳动力的相关性和技能
- 批准号:
1759229 - 财政年份:2018
- 资助金额:
$ 74.43万 - 项目类别:
Standard Grant
CIF21 DIBBs: PD: Enhancing and Personalizing Educational Resources through Tools for Experimentation
CIF21 DIBB:PD:通过实验工具增强和个性化教育资源
- 批准号:
1724889 - 财政年份:2017
- 资助金额:
$ 74.43万 - 项目类别:
Standard Grant
相似海外基金
BIORETS: Genetics, Genomics, and Biology Research Experiences for Teachers in the Sciences
BIORETS:科学教师的遗传学、基因组学和生物学研究经验
- 批准号:
2341385 - 财政年份:2024
- 资助金额:
$ 74.43万 - 项目类别:
Standard Grant
Utilizing Wrap Around Mentorship and Virtual Reality to Prepare and Sustain STEM Teachers in Rural High-Need Schools
利用环绕式指导和虚拟现实来培养和维持农村高需求学校的 STEM 教师
- 批准号:
2344941 - 财政年份:2024
- 资助金额:
$ 74.43万 - 项目类别:
Continuing Grant
Recruiting, Preparing, and Supporting STEM Professionals as Secondary STEM Teachers in High-Need School Districts in Ohio
招募、准备和支持 STEM 专业人员作为俄亥俄州高需求学区的中学 STEM 教师
- 批准号:
2345067 - 财政年份:2024
- 资助金额:
$ 74.43万 - 项目类别:
Continuing Grant
Cultivating Persistence and Leadership Development in Science Master Teachers
培养科学名师的毅力和领导力发展
- 批准号:
2345144 - 财政年份:2024
- 资助金额:
$ 74.43万 - 项目类别:
Continuing Grant
Attracting, preparing, and sustaining quality teachers in early education
吸引、培养和维持早期教育领域的优质教师
- 批准号:
DP240100249 - 财政年份:2024
- 资助金额:
$ 74.43万 - 项目类别:
Discovery Projects