Electrokinetic Biodegradation of Glyphosate: Feasibility, Mechanism, and Transport Modeling

草甘膦的电动生物降解:可行性、机制和传输模型

基本信息

  • 批准号:
    2305141
  • 负责人:
  • 金额:
    $ 39.94万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2026-09-30
  • 项目状态:
    未结题

项目摘要

Glyphosate is the most widely employed herbicide in the United States and globally. Approximately, 800,000 tons of glyphosate are utilized worldwide every year. Although the impact of glyphosate (GLYP) on human health is still the subject of ongoing debate, exposure to high concentrations of GLYP has been shown to 1) adversely impact ecosystem health including toxicity to several species in aquatic ecosystems and 2) contribute to the emergence of glyphosate-resistant crops, and herbicide resistance in weed populations. GLYP may also adversely impact soil quality and fertility, either through direct mechanisms such as complexation with metal ions that are essential to plant growth in soils, or through indirect mechanisms such as adversely affecting the growth and metabolism of mycorrhizae and earthworms, which can adversely impact plant access to nutrients and water infiltration in soils. In addition, GLYP accumulates in soils with limited (bio)degradation and mineralization through natural attenuation. Given the widespread use of GLYP, its potential ecosystem toxicity, and the limitations of natural attenuation, there is a critical need for more efficient and cost-effective remediation technologies for GLYP contaminated soils. The overarching goal of this project is to explore and investigate the utilization of electrokinetic biodegradation (EK-Bio) as an effective remediation technology for GLYP contaminated soils. The proposed EK-Bio remediation technology utilizes an electric field to enhance the biodegradation of contaminants in soils. The successful completion of this project will benefit society through the generation of new fundamental knowledge, data, and modeling tools to advance the design and deployment of more efficient and cost-effective technologies for the remediation of soils contaminated with GLYP to enable its safe and sustainable use in agriculture and farming. Additional benefits to society will be achieved through student education and training including the mentoring of a post-doctoral research fellow, one graduate student, and one undergraduate student at the University of Alabama.As a potential glyphosate (GLYP) soil remediation technology, electrokinetic biodegradation (EK-Bio) has several advantages. First, EK-Bio is an in-situ technology that utilizes an electric field to enhance the biodegradation of contaminants in soils including low-permeability soils. Second, EK-Bio can enhance the degradation of recalcitrant organic contaminants by enhancing ion movement (e.g., contaminants, nutrients, and electron donors/acceptors) and/or by increasing the activity of redox enzymes to enhance GLYP biodegradation in soils. Third, EK-Bio can easily be integrated with other technologies (e.g., soil flushing) to broaden its applicability and enhance its effectiveness. In this project, the Principal Investigators (PIs) propose to evaluate the hypothesis that EK-Bio has the potential to become an effective technology for the remediation of GLYP contaminated soils. To test this hypothesis, the PIs propose to carry out an integrated experimental and modeling research program. The specific objectives of the research are to 1) characterize GLYP degradation during EK-Bio under varying environmental and operating conditions in three model and representative soils; 2) probe and unravel the chemical and biological mechanisms of GLYP degradation using advanced analytical chemistry tools and molecular biology techniques; and 3) develop and validate a nonlocal reactive-transport model to simulate GLY fate and transport during an EK-Bio process. To implement the education and training goals of this project, the PIs plan to leverage existing programs at the University of Alabama (UA) to recruit and mentor undergraduate students to work on the project research activities. In addition, the PIs propose to partner with the University of Alabama Regional In-Service Education Center to deliver two annual education activities consisting of immersive lab demonstrations for high school students and teachers selected from over 120 schools in Western Alabama including a “Scientist for Day” program (Fall Semester) and a “Honor Day” program (Spring Semester).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
草甘膦是美国和全球使用最广泛的除草剂,全球每年使用草甘膦 (GLYP) 约 80 万吨,尽管草甘膦 (GLYP) 对人类健康的影响仍然是争论的焦点,但接触高浓度的草甘膦。 GLYP 已被证明 1) 对生态系统健康产生不利影响,包括对水生生态系统中多个物种的毒性,以及 2) 导致出现抗草甘膦作物和杂草种群中的除草剂抗性也可能对土壤质量和肥力产生不利影响,要么通过直接机制(如与土壤中植物生长必需的金属离子络合),要么通过间接机制(如对土壤中植物生长产生不利影响)。菌根和蚯蚓的生长和代谢,这会对植物获取土壤养分和水分渗透产生不利影响。此外,GLYP 在土壤中积累,(生物)降解和降解有限。鉴于 GLYP 的广泛使用、其潜在的生态系统毒性以及自然衰减的局限性,迫切需要针对 GLYP 污染土壤的更有效和更具成本效益的修复技术。探索和研究动电生物降解(EK-Bio)作为 GLYP 污染土壤的有效修复技术的利用。拟议的 EK-Bio 修复技术利用电场来增强 GLYP 污染土壤的修复技术。该项目的成功完成将通过产生新的基础知识、数据和建模工具来推进更有效和更具成本效益的技术的设计和部署,以修复受 GLYP 污染的土壤,从而造福社会。通过学生教育和培训,包括对阿拉巴马大学一名博士后研究员、一名研究生和一名本科生的指导,可以实现其在农业和农业中的安全和可持续利用。一个潜力草甘膦(GLYP)土壤修复技术,电动生物降解(EK-Bio)有几个优点,首先,EK-Bio是一种原位技术,利用电场增强土壤(包括低渗透性土壤)中污染物的生物降解。 , EK-Bio 可以通过增强离子运动(例如污染物、营养物和电子)来增强顽固性有机污染物的降解第三,EK-Bio 可以轻松地与其他技术(例如土壤冲洗)相结合,以扩大其适用性并提高其有效性。在该项目中,首席研究员 (PI) 提议评估 EK-Bio 有潜力成为修复 GLYP 污染土壤的有效技术的假设。 PI 提议开展一项综合实验和建模研究计划,该研究的具体目标是 1) 表征 EK-Bio 在三种模型和代表性土壤中的环境和操作条件下的 GLYP 降解情况;2) 探索并阐明化学物质。使用先进的分析化学工具和分子生物学技术研究 GLYP 降解的生物机制;3) 开发和验证非局部反应转运模型,以模拟 EK-Bio 过程中的 GLY 命运和转运,以实现教育和培训目标。在该项目中,PI 计划利用阿拉巴马大学 (UA) 的现有项目来招募和指导本科生从事该项目的研究活动。此外,PI 还提议与阿拉巴马大学地区在职教育合作。该中心将举办两项年度教育活动,包括为从阿拉巴马州西部 120 多所学校选出的高中生和教师进行沉浸式实验室演示,其中包括“日间科学家”计划(秋季学期)和“荣誉日”计划(春季学期)该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daqian Jiang其他文献

Ubiquity, diversity, and activity of comammox Nitrospira in agricultural soils
农业土壤中comammox Nitrospira的普遍性、多样性和活性
  • DOI:
    10.1016/j.scitoteuv.2019.136684
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    Shaoyi Xu;Baozhan Wang;Yong Li;Daqian Jiang;Yuting Zhou;Aqiang Ding;Yuxiao Zong;Xiaoting Ling;Senyin Zhang;Huijie Lu
  • 通讯作者:
    Huijie Lu
Evolution of the global polyethylene waste trade system
全球聚乙烯废物贸易体系的演变
  • DOI:
    10.1080/20964129.2020.1756925
  • 发表时间:
    2020-05
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Wen Xu;Wei-Qiang Chen;Daqian Jiang;Chao Zhang;Zijie Ma;Yan Ren;Lei Shi
  • 通讯作者:
    Lei Shi

Daqian Jiang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daqian Jiang', 18)}}的其他基金

An integrated technology for efficient selenium remediation
高效硒修复的综合技术
  • 批准号:
    2329227
  • 财政年份:
    2023
  • 资助金额:
    $ 39.94万
  • 项目类别:
    Standard Grant
CAREER: Establishing a Knowledge Base for Use and Discharge of Poly- and Perfluoroalkyl Substances
事业:建立多氟烷基物质和全氟烷基物质的使用和排放知识库
  • 批准号:
    2144550
  • 财政年份:
    2022
  • 资助金额:
    $ 39.94万
  • 项目类别:
    Continuing Grant

相似国自然基金

微藻对多环芳烃生物降解转化的分子机制
  • 批准号:
    22376035
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
表面活性剂影响石油生物降解过程中油水界面介尺度行为机制
  • 批准号:
    22366017
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
胞外聚合物强化微生物降解生物炭胶体吸附态磺胺甲恶唑的作用机制
  • 批准号:
    42307490
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
环糊精诱导六六六厌氧微生物降解的共代谢机制研究
  • 批准号:
    42377012
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Building Synthetic Biofilm Consortia for Polyfluorinated Chemicals Biodegradation
建立多氟化学品生物降解合成生物膜联盟
  • 批准号:
    2343831
  • 财政年份:
    2024
  • 资助金额:
    $ 39.94万
  • 项目类别:
    Standard Grant
Unlocking the secret chemistry of organosulfur biodegradation
解开有机硫生物降解的秘密化学
  • 批准号:
    DP240100126
  • 财政年份:
    2024
  • 资助金额:
    $ 39.94万
  • 项目类别:
    Discovery Projects
Bio-Responsive and Immune Protein-Based Therapies for Inhibition of Proteolytic Enzymes in Dental Tissues
用于抑制牙齿组织中蛋白水解酶的基于生物响应和免疫蛋白的疗法
  • 批准号:
    10555093
  • 财政年份:
    2023
  • 资助金额:
    $ 39.94万
  • 项目类别:
Manipulation of Host Tissue to Induce a Hierarchical Microvasculature
操纵宿主组织以诱导分层微脉管系统
  • 批准号:
    10637683
  • 财政年份:
    2023
  • 资助金额:
    $ 39.94万
  • 项目类别:
K.C. Donnelly Externship - Promotion of Translational/Transdisciplinary Efforts in Graduate and Post-Doctoral Research
K.C.
  • 批准号:
    10797644
  • 财政年份:
    2023
  • 资助金额:
    $ 39.94万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了