Manipulation of Host Tissue to Induce a Hierarchical Microvasculature

操纵宿主组织以诱导分层微脉管系统

基本信息

  • 批准号:
    10637683
  • 负责人:
  • 金额:
    $ 80.1万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-05-01 至 2027-04-30
  • 项目状态:
    未结题

项目摘要

Abstract Reconstructive surgeons are tasked with the restoration of soft tissue loss irrespective of etiology. Over the past two decades, hydrogel scaffolds have become a vital platform for tissue revascularization and surgical repair. However, their slow and random vascularization upon implantation often precipitates failure and precludes true tissue regeneration and function. Native microvascular networks are characterized by organized tree-like branching patterns that originate from large feeding vessels. Our objective is to utilize complementary regenerative strategies based upon rigorous preliminary data that enables the rapid development of this hierarchical microvasculature. To achieve our objective, we recently developed an innovative microsurgical tactic termed vascular micropuncture (MP). In this method, small perforations are created using a needle in the recipient vasculature to facilitate cellular extravasation and angiogenesis, without causing thrombosis or significant hemorrhage. Such induced angiogenesis can be used to randomly vascularize an adjacently placed hydrogel scaffold, leading to perfusion within 24 h and a doubling of neovascularization. With this compelling result, we propose to advance the MP method using an emerging in situ microengineering technology. We have developed granular hydrogel scaffolds (GHS) based on an extracellular matrix mimetic material with controlled microporosity that improves cell infiltration and guides vascular network formation both in vitro and in vivo. Our hypothesis is that customized GHS can be synergistically used with MP to hasten and precisely guide hierarchical microvascular development. To test this hypothesis, we will focus on the following three independent specific aims: 1) To design and optimize GHS to guide microvascular development, 2) To evaluate the effect of MP characteristics to hasten microvascular development and 3) To evaluate the coupling effects of MP and GHS to hasten and precisely guide hierarchical microvascular development. The successful completion of these studies should markedly improve the vascularization of scaffolds used in soft tissue reconstructive surgery. Also, it sets the platform for further investigation in building a hierarchical microvasculature that is cornerstone to blood flow regulation, oxygen diffusion, and immune cell modulation. Consequently, our novel approach holds immense potential for broadly advancing regenerative medicine.
抽象的 重建外科医生的任务是恢复软组织损失,无论病因如何。超过 在过去的二十年里,水凝胶支架已成为组织血运重建和外科手术的重要平台 维修。然而,它们在植入时缓慢且随机的血管化常常会导致失败并妨碍 真正的组织再生和功能。天然微血管网络的特点是有组织的树状结构 源自大型饲养管的分支模式。我们的目标是利用互补 基于严格的初步数据的再生策略使该技术能够快速发展 分层微血管。为了实现我们的目标,我们最近开发了一种创新的显微外科手术 称为血管微穿刺(MP)的策略。在这种方法中,使用针在孔中创建小穿孔。 受体血管系统促进细胞外渗和血管生成,而不会引起血栓形成或 严重出血。这种诱导的血管生成可用于随机使相邻放置的血管化 水凝胶支架,导致 24 小时内灌注和新血管形成加倍。凭借这个引人注目的 因此,我们建议使用新兴的原位微工程技术来推进 MP 方法。我们有 开发了基于细胞外基质模拟材料的颗粒水凝胶支架(GHS) 微孔性可改善细胞浸润并引导体外和体内血管网络的形成。 我们的假设是,定制的 GHS 可以与 MP 协同使用,以加速和精确指导 分层微血管发育。为了检验这个假设,我们将重点关注以下三个独立的 具体目标:1) 设计和优化 GHS 以指导微血管发育,2) 评估效果 MP 特性可加速微血管发育,3) 评估 MP 和 GHS 的耦合效应 加速并精确指导分层微血管发育。这些工作的顺利完成 研究应显着改善软组织重建手术中使用的支架的血管化。还, 它为进一步研究构建作为血液基石的分层微脉管系统奠定了平台 流量调节、氧扩散和免疫细胞调节。因此,我们的新颖方法成立 广泛推进再生医学的巨大潜力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

DINO J RAVNIC其他文献

DINO J RAVNIC的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('DINO J RAVNIC', 18)}}的其他基金

Diversity Supplement: Manipulation of Host Tissue to Induce a Hierarchical Microvasculature
多样性补充:操纵宿主组织以诱导分层微血管系统
  • 批准号:
    10851311
  • 财政年份:
    2023
  • 资助金额:
    $ 80.1万
  • 项目类别:
Manipulating the host-biomaterial interface for enhanced scaffold vascularization
操纵宿主-生物材料界面以增强支架血管化
  • 批准号:
    10644159
  • 财政年份:
    2022
  • 资助金额:
    $ 80.1万
  • 项目类别:
Mechanisms and Application of Micropunctured Induced Angiogenesis for the Rapid Perfusion of Intraoperative Bioprinted Flaps
微刺诱导血管生成术中生物打印皮瓣快速灌注的机制及应用
  • 批准号:
    10179655
  • 财政年份:
    2021
  • 资助金额:
    $ 80.1万
  • 项目类别:
Vascular Adaptations in Lymphocyte Transmigration
淋巴细胞迁移中的血管适应
  • 批准号:
    6934634
  • 财政年份:
    2004
  • 资助金额:
    $ 80.1万
  • 项目类别:
Vascular Adaptations in Lymphocyte Transmigration
淋巴细胞迁移中的血管适应
  • 批准号:
    6836728
  • 财政年份:
    2004
  • 资助金额:
    $ 80.1万
  • 项目类别:

相似国自然基金

冠状小微血管超声微泡造影多灌注峰参量三维高时空分辨成像
  • 批准号:
    12374444
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
超声造影评价SOCS3通过miRNAs靶向介导的自噬途径调控血管新生对缺血性脑卒中的作用研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
针对活体微血管成像的时空融合运动衬度X射线造影术
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
在超广角眼底血管荧光造影上自动化精确测量糖尿病视网膜病变的血管改变及其临床应用
  • 批准号:
    81900863
  • 批准年份:
    2019
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Diversity Supplement: Manipulation of Host Tissue to Induce a Hierarchical Microvasculature
多样性补充:操纵宿主组织以诱导分层微血管系统
  • 批准号:
    10851311
  • 财政年份:
    2023
  • 资助金额:
    $ 80.1万
  • 项目类别:
DL-based CT image formation with characterization and control of resolution and noise
基于深度学习的 CT 图像形成,具有分辨率和噪声的表征和控制
  • 批准号:
    10666105
  • 财政年份:
    2023
  • 资助金额:
    $ 80.1万
  • 项目类别:
Motion-Resistant Background Subtraction Angiography with Deep Learning: Real-Time, Edge Hardware Implementation and Product Development
具有深度学习的抗运动背景减影血管造影:实时、边缘硬件实施和产品开发
  • 批准号:
    10602275
  • 财政年份:
    2023
  • 资助金额:
    $ 80.1万
  • 项目类别:
Mechanistic Understanding of Mustard Gas Toxicity in the Retina using a Minipig Model
使用小型猪模型了解芥子气视网膜毒性的机制
  • 批准号:
    10882080
  • 财政年份:
    2023
  • 资助金额:
    $ 80.1万
  • 项目类别:
Vessel Identification and Tracing in DSA Image Series for Cerebrovascular Surgical Planning
用于脑血管手术计划的 DSA 图像系列中的血管识别和追踪
  • 批准号:
    10726103
  • 财政年份:
    2023
  • 资助金额:
    $ 80.1万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了