MRI: Development of Ultra-Broadband High-Power Frequency Comb Light Source for Advanced Spectroscopy and Imaging

MRI:开发用于先进光谱和成像的超宽带高功率频率梳光源

基本信息

  • 批准号:
    2216021
  • 负责人:
  • 金额:
    $ 100万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2027-08-31
  • 项目状态:
    未结题

项目摘要

General Audience Abstract:With support from the Physics Division, three programs in the Chemistry Division (CRIF, CMI, CSDM-A), the Astronomy Division, the Division of Materials Research, and the Office of Integrative Activities, Professors Allison and Liu at Stony Brook University will develop a new laser-based light source spanning a wide swath of the electromagnetic spectrum. The research will advance the state of the art in frequency comb technology and enable a variety of experiments involving 10 principal investigators (PIs) at Stony Brook along with a regional network of PIs from other nearby institutions. A frequency comb is a synthesizer for light waves, with which the user can control the electric field of light waves with the same precision routinely accomplished for radio frequency and microwave fields using the electronic technology that is the backbone of modern life. This control over light waves can enable myriad applications, however many applications of frequency combs have been limited by the available power and spectral coverage from currently available light sources. The new light source to be developed at Stony Brook will address this challenge by using high-power fiber lasers and nonlinear optics to generate frequency combs with unprecedented brightness and spectral coverage. With frequency combs spanning from the far-infrared to the soft x-ray, it is planned to cover more than 17 octaves (or about 2 and a half pianos’ worth) of frequency space. After development, the light source will be applied to experiments in four targeted areas: 1) nanometer resolved characterization of quantum materials and devices, 2) time-resolved imaging of electron motion in molecules and quantum materials, 3) ultrasensitive gas-phase molecular spectroscopy for both fundamental studies and analytical chemistry, and 4) quantum information science using atomic, molecular, and optical physics (AMO) platforms. It is also expected that the research will have a much broader impact than these activities at Stony Brook via the dissemination of detailed construction plans for the light source to the broader community, the training of students and postdocs in advanced optical methods, the development of new pedagogical experiments for undergraduate education, and potential future integration of the developed frequency comb technology into the NSF NeXUS, NSF’s new flagship laser-based user facility for ultrafast science.Technical Audience Abstract:PIs Allison and Liu will develop a new frequency comb light source at Stony Brook University with output spanning a wide swath of the electromagnetic spectrum, from the THz region (E 0.001 eV) all the way to the soft x-ray (E 200 eV). Built with a robust and reliable fiber-laser backbone, this light source will provide phase-coherent femtosecond-duration light pulses at MHz repetition rates that will be used in a variety of experiments. The light source development work proposed here will quantitatively advance the state of the art in frequency combs, and ultrafast optics in general, in a number of important ways. For one example, the PIs will produce the brightest source of broadband coherent THz and far-infrared radiation, orders of magnitude brighter than dedicated infrared/THz beamlines at synchrotron light sources. Similar to previous advances in light source technology, these developments will have a large qualitative impact on a wide range of science, with many applications both foreseen and unforeseen. At Stony Brook, the light source will specifically impact four activities, undertaken by 13 additional major users in collaboration with the PIs: 1) scanning near-field optical microscopy (SNOM) of quantum materials, 2) time- and angle-resolved photoemission (tr-ARPES) of quantum materials and molecular systems, 3) high-resolution and ultrafast spectroscopy of gas-phase molecules, and 4) laser stabilization in atomic, molecular, and optical (AMO) physics labs. Technology transfer to the broader community will be accomplished via detailed “how-to” papers, with complete parts lists, that enable others to build their own combs, and also via collaboration with the NSF NeXUS facility, NSF’s new flagship user facility for ultrafast spectroscopy. At Stony Brook, the new frequency comb system will also enable new experiments in the Laser Teaching Center, a unique facility at Stony Brook with full-time staff dedicated to education, outreach, and training.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
摘要:在物理系、化学系三个项目(CRIF、CMI、CSDM-A)、天文学系、材料研究系和综合活动办公室的支持下,Stony 的 Allison 和 Liu 教授布鲁克大学将开发一种跨越广泛电磁频谱的新型激光光源,该研究将推动频率梳技术的发展,并使得 10 名主要研究人员参与的各种实验成为可能。石溪分校的 PI 以及附近其他机构的 PI 区域网络是一种光波合成器,用户可以用它控制光波的电场,其精度与射频和射频的常规控制相同。使用电子技术的微波场是现代生活的支柱,这种对光波的控制可以实现无数的应用,但是频率梳的许多应用受到当前可用光源的可用功率和光谱覆盖范围的限制。将在石溪开发将通过使用高功率光纤激光器和非线性光学来生成具有前所未有的亮度和光谱覆盖范围的频率梳来应对这一挑战,频率梳的范围涵盖从远红外到软X射线,计划覆盖超过17个倍频程。 (或大约相当于两个半钢琴的频率空间)开发后,该光源将应用于四个目标领域的实验:1)量子材料和器件的纳米分辨率表征,2)分子和量子材料中电子运动的时间分辨成像,3)用于基础研究和分析化学的超灵敏气相分子光谱,以及4)使用原子、分子和光学物理(AMO)平台的量子信息科学。通过向更广泛的社区传播详细的光源建设计划、对学生和博士后进行先进光学方法的培训、开发新的教学实验,该研究将比石溪的这些活动产生更广泛的影响用于本科教育,以及未来可能将开发的频率梳技术集成到 NSF NeXUS 中,NSF NeXUS 是 NSF 超快科学的新旗舰激光用户设施。技术受众摘要:PI Allison 和 Liu 将在石溪分校开发一种新的频率梳光源大学的输出涵盖广泛的电磁频谱,从太赫兹区域 (E 0.001 eV) 一直到软 X 射线 (E 200 eV)。该光源采用坚固可靠的光纤激光器主干,将提供 MHz 重复频率的相位相干飞秒持续时间光脉冲,该脉冲将用于各种实验。这里提出的光源开发工作将定量地推进该状态。频率梳和一般超快光学领域的技术,在许多重要方面,例如,PI将产生最亮的宽带相干太赫兹和远红外辐射源,亮度比频率梳高几个数量级。与同步加速器光源的专用红外/太赫兹光束线类似,这些发展将对广泛的科学产生巨大的定性影响,在石溪,光源将产生许多可预见和不可预见的应用。具体影响了另外 13 个主要用户与 PI 合作开展的四项活动:1) 量子材料的扫描近场光学显微镜 (SNOM),2) 时间和角度分辨光电发射(tr-ARPES)量子材料和分子系统,3)气相分子的高分辨率和超快光谱,以及4)原子、分子和光学(AMO)物理实验室的激光稳定技术向更广泛的社区转移。将通过详细的“操作方法”文件和完整的零件清单来完成,使其他人能够构建自己的梳子,并通过与 NSF NeXUS 设施(NSF 的超快新旗舰用户设施)的合作来完成在石溪分校,新的频率梳系统还将在激光教学中心进行新的实验,该中心是石溪分校的一个独特设施,拥有致力于教育、推广和培训的全职工作人员。该奖项反映了 NSF 的法定使命,并具有通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Allison其他文献

Simulations of Vertical Water Vapor Transport for TC Ingrid (2013)
TC Ingrid 的垂直水蒸气传输模拟 (2013)
Do flushed biodegradable wet wipes really degrade?
冲过的可生物降解湿巾真的会降解吗?
  • DOI:
    10.1016/j.scitotenv.2023.164912
  • 发表时间:
    2023-06-17
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Thomas Allison;Benjamin D. Ward;M. Harbottle;I. Durance
  • 通讯作者:
    I. Durance

Thomas Allison的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Allison', 18)}}的其他基金

Collaborative Research: Understanding Ultrafast Observables
合作研究:理解超快可观测值
  • 批准号:
    2102319
  • 财政年份:
    2021
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
Widely Tunable Cavity-Enhanced Ultrafast Spectroscopy and the Dynamics of Hydrogen Bond Networks
宽可调腔增强超快光谱和氢键网络动力学
  • 批准号:
    1708743
  • 财政年份:
    2017
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
Cavity Enhanced Ultrafast Transient Absorption Spectroscopy
腔增强超快瞬态吸收光谱
  • 批准号:
    1404296
  • 财政年份:
    2014
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant

相似国自然基金

组蛋白乳酸化激活ac4C乙酰化促进葡萄膜黑色素瘤发展的作用机制研究
  • 批准号:
    82373298
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
15-PGDH通过AMPK信号通路调控NAFLD发生发展的分子机制研究
  • 批准号:
    82300967
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
人工智能技术加剧全球价值链非平衡发展的形成机理与中国对策研究
  • 批准号:
    72303127
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
新物质主义视角下旅游商品带动地方发展的格局、过程及作用机制
  • 批准号:
    42371235
  • 批准年份:
    2023
  • 资助金额:
    46 万元
  • 项目类别:
    面上项目
tRNAMet通过调控富含AUG密码子基因的蛋白翻译促进HCC发展的机制研究
  • 批准号:
    82373963
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目

相似海外基金

An acquisition and analysis pipeline for integrating MRI and neuropathology in TBI-related dementia and VCID
用于将 MRI 和神经病理学整合到 TBI 相关痴呆和 VCID 中的采集和分析流程
  • 批准号:
    10810913
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
Neural Circuit-Specific Mechanisms of Ketamine's Effect on Anhedonia and Anxiety in Depression Using Ultra-High Field 7-Tesla MRI
使用超高场 7 特斯拉 MRI 研究氯胺酮对抑郁症快感缺乏和焦虑影响的神经回路特异性机制
  • 批准号:
    10713827
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
Acquisition of a Bruker 11.7T/16cm Preclinical Scanner for Novel MRI/MRSI Studies
采购布鲁克 11.7T/16cm 临床前扫描仪用于新型 MRI/MRSI 研究
  • 批准号:
    10630511
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
A computational approach combining 4D Flow and CFD for improved determination of cerebral hemodynamics
结合 4D Flow 和 CFD 的计算方法可改进脑血流动力学测定
  • 批准号:
    10581283
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
7T MRI as a potential tool for detection of pathology in Alzheimer's disease
7T MRI 作为检测阿尔茨海默病病理的潜在工具
  • 批准号:
    10349883
  • 财政年份:
    2022
  • 资助金额:
    $ 100万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了