Collaborative Research: Understanding Ultrafast Observables

合作研究:理解超快可观测值

基本信息

  • 批准号:
    2102319
  • 负责人:
  • 金额:
    $ 67.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

With support from the Chemical Structure, Dynamics, and Mechanisms-A (CSDM-A) and Chemical Theory, Models, and Computational Methods (CTMC) programs in the Division of Chemistry, Professors Allison, Levine, and Weinacht at Stony Brook University, and Professor Matsika at Temple University are developing new ways to understand the information obtained from sophisticated measurements of the dynamics of molecules. The structure and behavior of molecules are governed by the rules of quantum mechanics. The field of quantum chemistry, which applies the principles of quantum mechanics to molecular problems, has developed over decades based on rigorous comparison between experiments and theory, resulting in reliable computer codes that can be used by non-experts to calculate the properties of molecules in their lowest-energy states. However, similar quantum chemistry calculations are far more challenging for molecules that have been excited, for example by absorbing energy from light, and are able to undergo very fast chemical transformations. Part of the difficulty in developing quantum chemistry methods for excited molecules is that the experimental measurements are much harder to interpret, and comparisons with theory are generally much less rigorous than for molecules in their ground state. This collaborative research team is working to better understand the experimental observables by studying molecules prepared in the same way using different types of experiments, and by making direct comparisons of those observables with quantum chemical calculations that simulate both the measurement process and the excited-state dynamics. In addition to producing a set of benchmark measurements for several representative molecules, the team is working toward a new paradigm for understanding measurements of the dynamics of molecules, including a new format for sharing data. Beyond these scientific broader impacts, the project also provides advanced training for graduate students in a highly collaborative environment.Ultrafast spectroscopy offers the opportunity to directly probe the dynamics of molecules after excitation. However, the interpretation of data from ultrafast spectroscopy remains a challenge because projection of high dimensional dynamics into a much lower dimensional signal is unavoidable. In principle, a probe that projects the time-dependent molecular wave packet onto the set of all possible states provides a complete, if difficult to interpret, picture of the dynamics in question. The research team led by Professors Allison, Levine, Weinacht, and Matsika is addressing this problem by applying multiple recently developed experimental and theoretical tools to measure and calculate the dynamics of identically prepared gas-phase molecules. Complementary time-resolved photoelectron and visible transient absorption probes project the molecular wave packet onto a broad swath of Hilbert space, providing more information about the dynamics than is possible with either method on its own. The measurements are compared with ab initio simulations of the dynamics, from which identical projections are performed. This rigorous comparison between measured and calculated spectra utilizing complementary probes is enabled by recent methodological advances, including the development of a gas-phase transient absorption spectrometer and novel ab initio tools for efficiently computing probe signals from large molecular dynamics data sets. These systematic studies are producing benchmark datasets on archetypal molecular systems that present challenging problems at the vanguard of quantum chemistry and molecular dynamics, including non-adiabatic dynamics and intersystem crossing. The fundamental processes under investigation play an important role across a wide range of chemical reactions that are driven by light. Through this collaborative effort, the team is also working to develop and disseminate a new data format for sharing both theoretical and experimental ultrafast dynamics results based on the FAIR principle (findable, accessible, interoperable, reusable). Graduate students working on the project learn how to approach complex problems in chemistry based on collaborative research at the forefront of both experiment and theory.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学系化学结构、动力学和机理-A (CSDM-A) 和化学理论、模型和计算方法 (CTMC) 项目的支持下,石溪大学的 Allison、Levine 和 Weinacht 教授以及天普大学的马齐卡教授正在开发新的方法来理解从分子动力学的复杂测量中获得的信息。分子的结构和行为受量子力学规则控制。量子化学领域将量子力学原理应用于分子问题,基于实验与理论之间的严格比较,已经发展了数十年,产生了可靠的计算机代码,非专家可以使用这些代码来计算分子的性质它们的最低能量状态。然而,对于已经被激发的分子(例如通过吸收光能)并且能够经历非常快的化学转变的分子来说,类似的量子化学计算更具挑战性。开发激发分子的量子化学方法的部分困难在于实验测量更难以解释,并且与理论的比较通常不如基态分子严格。该合作研究团队致力于通过研究使用不同类型的实验以相同方式制备的分子,并将这些可观测值与模拟测量过程和激发态动力学的量子化学计算进行直接比较,从而更好地理解实验可观测值。除了为几种代表性分子生成一组基准测量之外,该团队还致力于建立一种新的范例来理解分子动力学的测量,包括共享数据的新格式。除了这些更广泛的科学影响之外,该项目还在高度协作的环境中为研究生提供高级培训。超快光谱提供了直接探测激发后分子动力学的机会。然而,对超快光谱数据的解释仍然是一个挑战,因为将高维动力学投影到低维信号中是不可避免的。原则上,将时间相关分子波包投射到所有可能状态集上的探针提供了所讨论的动力学的完整(尽管难以解释)图像。由 Allison、Levine、Weinacht 和 Matsika 教授领导的研究小组正在通过应用多种最近开发的实验和理论工具来测量和计算相同制备的气相分子的动力学来解决这个问题。互补的时间分辨光电子和可见瞬态吸收探针将分子波包投射到希尔伯特空间的广阔区域上,提供比单独使用任何一种方法都可能提供的更多有关动力学的信息。将测量结果与动力学的从头开始模拟进行比较,从中进行相同的预测。这种利用互补探针测量和计算的光谱之间的严格比较是通过最近的方法论进步实现的,包括气相瞬态吸收光谱仪和新型从头算工具的开发,用于从大型分子动力学数据集中有效计算探针信号。这些系统研究正在生成关于原型分子系统的基准数据集,这些系统在量子化学和分子动力学的前沿提出了具有挑战性的问题,包括非绝热动力学和系间交叉。正在研究的基本过程在光驱动的各种化学反应中发挥着重要作用。通过这种协作努力,该团队还致力于开发和传播一种新的数据格式,用于基于公平原则(可查找、可访问、可互操作、可重用)共享理论和实验超快动力学结果。从事该项目的研究生学习如何基于实验和理论前沿的合作研究来解决化学中的复杂问题。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响进行评估,被认为值得支持审查标准。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Excited-state dynamics of o -nitrophenol studied with UV pump–VUV probe time-resolved photoelectron and photoion spectroscopy
使用 UV 泵 VUV 探针时间分辨光电子和光离子光谱研究邻硝基苯酚的激发态动力学
  • DOI:
    10.1063/5.0146399
  • 发表时间:
    2023-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    McClung, Samuel;Abeygunewardane, Dakshitha;Matsika, Spiridoula;Weinacht, Thomas
  • 通讯作者:
    Weinacht, Thomas
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Allison其他文献

Simulations of Vertical Water Vapor Transport for TC Ingrid (2013)
TC Ingrid 的垂直水蒸气传输模拟 (2013)
Do flushed biodegradable wet wipes really degrade?
冲过的可生物降解湿巾真的会降解吗?
  • DOI:
    10.1016/j.scitotenv.2023.164912
  • 发表时间:
    2023-06-17
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Thomas Allison;Benjamin D. Ward;M. Harbottle;I. Durance
  • 通讯作者:
    I. Durance

Thomas Allison的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Allison', 18)}}的其他基金

MRI: Development of Ultra-Broadband High-Power Frequency Comb Light Source for Advanced Spectroscopy and Imaging
MRI:开发用于先进光谱和成像的超宽带高功率频率梳光源
  • 批准号:
    2216021
  • 财政年份:
    2022
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Standard Grant
Widely Tunable Cavity-Enhanced Ultrafast Spectroscopy and the Dynamics of Hydrogen Bond Networks
宽可调腔增强超快光谱和氢键网络动力学
  • 批准号:
    1708743
  • 财政年份:
    2017
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Continuing Grant
Cavity Enhanced Ultrafast Transient Absorption Spectroscopy
腔增强超快瞬态吸收光谱
  • 批准号:
    1404296
  • 财政年份:
    2014
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Standard Grant

相似国自然基金

面向真实场景的基于人体关节点的行为理解研究
  • 批准号:
    62302093
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于脉冲神经元内在可塑性建模的类脑智能交互意图理解研究
  • 批准号:
    62376261
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
多模态数学问题理解和类人解答方法研究
  • 批准号:
    62376012
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
面向开放场景的多模态视频表征与理解研究
  • 批准号:
    62376069
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于深度理解的大规模互联网虚假新闻检测研究
  • 批准号:
    62302333
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Understanding the discharge mechanism at solid/aprotic interfaces of Na-O2 battery cathodes to enhance cell cyclability
合作研究:了解Na-O2电池阴极固体/非质子界面的放电机制,以增强电池的循环性能
  • 批准号:
    2342025
  • 财政年份:
    2024
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding the Role of Surface Bound Ligands on Metals in H2O2 Direct Synthesis
合作研究:了解金属表面结合配体在 H2O2 直接合成中的作用
  • 批准号:
    2349883
  • 财政年份:
    2024
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
  • 批准号:
    2327826
  • 财政年份:
    2024
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
  • 批准号:
    2327827
  • 财政年份:
    2024
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
  • 批准号:
    2318851
  • 财政年份:
    2024
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了