Collaborative Research:Theory-guided Design and Discovery of Rare-Earth Element 2D Transition Metal Carbides MXenes (RE-MXenes)
合作研究:稀土元素二维过渡金属碳化物MXenes(RE-MXenes)的理论指导设计与发现
基本信息
- 批准号:2419026
- 负责人:
- 金额:$ 33.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-02-15 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
NON-TECHNICAL SUMMARYThe ever-increasing demand for higher computing power and data storage while reducing power consumption and carbon footprint calls for new materials and computing paradigms. This need is accentuated by the fact that after decades of aggressive miniaturization, electronic devices are currently reaching the end of the road for traditional materials as we “run out of atoms”. Two-dimensional (2D) materials, a relatively new class of materials consisting of few-atom-thick sheets, provide a platform to address these challenges. Particularly interesting are 2D transition metal carbides, known as MXenes, composed of two to four atomic layers of transition metals separated by an atomic layer of carbon. MXenes are studied for various applications, including energy storage and generation, blocking electromagnetic waves, and antenna. Despite significant progress, room temperature magnetism, important for quantum computation, computer memories, and spintronics, has remained elusive. With this project, supported by the Solid State and Materials Chemistry program in the Division of Materials Research, Professor Babak Anasori at Indiana University Purdue University Indianapolis and Professor Alejandro Strachan at Purdue University and their research groups will design and fabricate novel 2D MXenes that contain rare-earth elements, such as neodymium and gadolinium, and develop a fundamental understanding of how such elements can be used to control the electronic, magnetic, and optical properties of these materials. Computational modeling is used to guide the experimental design of these new materials and reduce the number of experiments to the most promising candidates. The team hypothesizes that the use of rare-earth elements in MXenes can lead to the first room-temperature 2D magnets. To accelerate innovation, all experimental and theoretical results produced and models developed will be made accessible for the researchers and educators for online computing. The microscopic images of nanomaterials and 2D materials have been used in many nanoart visualizations, such as NanoArtography, to promote STEM. The nanoart images will be integrated into local nanoscience outreach activities, such as Purdue’s NanoDays, to motivate art-enthusiastic children to have a chance to learn about the science and engineering behind nanoart images.TECHNICAL SUMMARY2D transition metal carbide MXenes have become one of the largest 2D material families over the past decade. MXenes have metallic electrical conductivities, are hydrophilic, and capable of intercalating a host of ions and organic molecules, leading to outstanding performance in applications such as energy storage, electromagnetic interference (EMI) shielding, wireless communications, catalysis, and biomedicine. Double-transition metal MXenes are a subfamily of MXenes that enable significant tunability in properties by changing the MXenes transition metal compositions. The research, supported by the Solid State and Materials Chemistry program in the Division of Materials Research, aims to design, synthesize, and characterize a new family of 2D double-transition metal carbides: rare-earth (RE) f-element 2D MXenes opening the possibility of magnetic properties. This will be accomplished via a synergistic combination of theory and experiments. The overarching goal of this project is to develop a fundamental understanding of how different rare-earth elements can be incorporated into MXenes and use it to control the electronic, optical, and magnetic properties of these novel phases. The limiting factor hindering f-element MXenes is their synthesis that requires the design of novel f-element MAX phase precursors among the large compositional space. This project uses high-throughput first principles and thermodynamic calculations to identify stable precursors and their MXenes and use data science tools to guide experimental efforts. Rare-earth f-element MXenes can have radically different properties that have never been measured in regular MXenes and are absent in other 2D and bulk materials. Rare-earth MXenes can have potential applications from EMI shielding, optoelectronics, and catalysis to quantum computation, spintronics, and magnetoelectronics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要对更高计算能力和数据存储的需求不断增长,同时降低功耗和碳足迹,需要新的材料和计算范例,经过几十年的积极小型化,电子设备目前已达到了小型化的要求。二维(2D)材料是一种由几个原子厚的片组成的相对较新的材料,它为解决这些挑战提供了一个平台。特别有趣的是二维过渡金属碳化物,称为 MXene,由两到四个过渡金属原子层组成,中间被碳原子层隔开。MXene 可用于各种应用,包括能量存储和发电、阻挡电磁波和天线。尽管取得了重大进展,但对于量子计算、计算机存储器和自旋电子学很重要的室温磁性仍然难以捉摸,而这个项目得到了材料部固态和材料化学项目的支持。研究人员表示,印第安纳大学普渡大学印第安纳波利斯分校的 Babak Anasori 教授和普渡大学的 Alejandro Strachan 教授及其研究小组将设计和制造含有稀土元素(例如钕和钆)的新型 2D MXene,并深入了解这些元素如何发挥作用。元素可用于控制这些材料的电子、磁性和光学特性,计算模型用于指导这些新材料的实验设计,并减少最有希望的候选材料的实验数量。发现在 MXene 中使用稀土元素可以产生第一个室温二维磁体,为了加速创新,所有产生的实验和理论结果以及开发的模型都将可供研究人员和教育工作者进行在线计算。纳米材料和二维材料的图像已被用于许多纳米艺术可视化,例如 NanoArtography,以促进 STEM 纳米艺术图像将被整合到当地的纳米科学推广活动中,例如普渡大学的 NanoDays,以激励人们。对艺术感兴趣的孩子有机会了解纳米艺术图像背后的科学和工程。技术摘要二维过渡金属碳化物 MXene 在过去十年中已成为最大的二维材料系列之一,MXene 具有金属导电性,具有亲水性且功能强大。嵌入大量离子和有机分子,在能量存储、电磁干扰 (EMI) 屏蔽、无线通信、催化和等应用中具有出色的性能双过渡金属 MXene 是 MXene 的一个亚家族,通过改变 MXene 过渡金属成分,可以实现显着的性能可调。这项研究得到了材料研究部固态和材料化学项目的支持,旨在设计、合成。 ,并表征了一个新的二维双过渡金属碳化物家族:稀土(RE)f元素二维MXenes,开启了磁性特性的可能性。通过理论和实验的协同结合,该项目的总体目标是对如何将不同的稀土元素融入 MXene 中并利用它来控制这些新相的电子、光学和磁性特性有一个基本的了解。阻碍 f 元素 MXene 合成的限制因素是其合成,需要在大的组成空间中设计新型 f 元素 MAX 相前体。该项目使用高通量第一原理和热力学计算来识别稳定的前体和材料。他们的 MXene 并使用数据科学工具来指导实验工作,稀土 f 元素 MXene 可以具有在常规 MXene 中从未测量过的完全不同的特性,并且在其他 2D 和散装材料中不存在。从 EMI 屏蔽、光电子学和催化到量子计算、自旋电子学和磁电子学。该奖项反映了 NSF 的法定使命,并被认为值得支持通过使用基金会的智力优点和更广泛的影响审查标准进行评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Babak Anasori其他文献
Rational Design of Two-Dimensional Transition Metal Carbide/Nitride (MXene) Hybrides and Nanocomposites for Catalytic Energy Storage and Conversion
用于催化能量存储和转换的二维过渡金属碳化物/氮化物(MXene)杂化物和纳米复合材料的合理设计
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:17.1
- 作者:
Kang Rui Garrick Lim;Albertus D. H;oko;Srinivasa Kartik Nemani;Brian Wyatt;Hai-Ying Jiang;Junwang Tang;Babak Anasori;Zhi Wei Seh - 通讯作者:
Zhi Wei Seh
Accelerating 2D materials discovery
加速二维材料发现
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:56.9
- 作者:
Anupma Thakur;Babak Anasori - 通讯作者:
Babak Anasori
Babak Anasori的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Babak Anasori', 18)}}的其他基金
Collaborative Research:Theory-guided Design and Discovery of Rare-Earth Element 2D Transition Metal Carbides MXenes (RE-MXenes)
合作研究:稀土元素二维过渡金属碳化物MXenes(RE-MXenes)的理论指导设计与发现
- 批准号:
2124478 - 财政年份:2021
- 资助金额:
$ 33.73万 - 项目类别:
Continuing Grant
相似国自然基金
基于无人机遥感成像及分布式数据协作的光伏发电预测理论研究
- 批准号:51907151
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
工业云环境下的制造服务协作机理与可靠性分析理论研究
- 批准号:51875030
- 批准年份:2018
- 资助金额:65.0 万元
- 项目类别:面上项目
面向协作式云计算的数据完整性验证理论与方法研究
- 批准号:61702379
- 批准年份:2017
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
导频污染下大规模分布式MIMO无线传输理论与技术研究
- 批准号:61501113
- 批准年份:2015
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
多点协作多用户无线通信信道互易性错误条件下的通信方法研究
- 批准号:61101092
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Design and synthesis of hybrid anode materials made of chemically bonded carbon nanotube to copper: a concerted experiment/theory approach
合作研究:设计和合成由化学键合碳纳米管和铜制成的混合阳极材料:协调一致的实验/理论方法
- 批准号:
2334039 - 财政年份:2024
- 资助金额:
$ 33.73万 - 项目类别:
Continuing Grant
Collaborative Research: Design and synthesis of hybrid anode materials made of chemically bonded carbon nanotube to copper: a concerted experiment/theory approach
合作研究:设计和合成由化学键合碳纳米管和铜制成的混合阳极材料:协调一致的实验/理论方法
- 批准号:
2334040 - 财政年份:2024
- 资助金额:
$ 33.73万 - 项目类别:
Continuing Grant
Collaborative Research: Advances in the Theory and Practice of Non-Euclidean Statistics
合作研究:非欧几里得统计理论与实践的进展
- 批准号:
2311058 - 财政年份:2023
- 资助金额:
$ 33.73万 - 项目类别:
Continuing Grant
Collaborative Research: CIF: Small: Theory for Learning Lossless and Lossy Coding
协作研究:CIF:小型:学习无损和有损编码的理论
- 批准号:
2324396 - 财政年份:2023
- 资助金额:
$ 33.73万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: New Directions and Approaches in Discrepancy Theory
合作研究:AF:小:差异理论的新方向和方法
- 批准号:
2327010 - 财政年份:2023
- 资助金额:
$ 33.73万 - 项目类别:
Standard Grant