Collaborative Research:Theory-guided Design and Discovery of Rare-Earth Element 2D Transition Metal Carbides MXenes (RE-MXenes)

合作研究:稀土元素二维过渡金属碳化物MXenes(RE-MXenes)的理论指导设计与发现

基本信息

  • 批准号:
    2419026
  • 负责人:
  • 金额:
    $ 33.73万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-02-15 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

NON-TECHNICAL SUMMARYThe ever-increasing demand for higher computing power and data storage while reducing power consumption and carbon footprint calls for new materials and computing paradigms. This need is accentuated by the fact that after decades of aggressive miniaturization, electronic devices are currently reaching the end of the road for traditional materials as we “run out of atoms”. Two-dimensional (2D) materials, a relatively new class of materials consisting of few-atom-thick sheets, provide a platform to address these challenges. Particularly interesting are 2D transition metal carbides, known as MXenes, composed of two to four atomic layers of transition metals separated by an atomic layer of carbon. MXenes are studied for various applications, including energy storage and generation, blocking electromagnetic waves, and antenna. Despite significant progress, room temperature magnetism, important for quantum computation, computer memories, and spintronics, has remained elusive. With this project, supported by the Solid State and Materials Chemistry program in the Division of Materials Research, Professor Babak Anasori at Indiana University Purdue University Indianapolis and Professor Alejandro Strachan at Purdue University and their research groups will design and fabricate novel 2D MXenes that contain rare-earth elements, such as neodymium and gadolinium, and develop a fundamental understanding of how such elements can be used to control the electronic, magnetic, and optical properties of these materials. Computational modeling is used to guide the experimental design of these new materials and reduce the number of experiments to the most promising candidates. The team hypothesizes that the use of rare-earth elements in MXenes can lead to the first room-temperature 2D magnets. To accelerate innovation, all experimental and theoretical results produced and models developed will be made accessible for the researchers and educators for online computing. The microscopic images of nanomaterials and 2D materials have been used in many nanoart visualizations, such as NanoArtography, to promote STEM. The nanoart images will be integrated into local nanoscience outreach activities, such as Purdue’s NanoDays, to motivate art-enthusiastic children to have a chance to learn about the science and engineering behind nanoart images.TECHNICAL SUMMARY2D transition metal carbide MXenes have become one of the largest 2D material families over the past decade. MXenes have metallic electrical conductivities, are hydrophilic, and capable of intercalating a host of ions and organic molecules, leading to outstanding performance in applications such as energy storage, electromagnetic interference (EMI) shielding, wireless communications, catalysis, and biomedicine. Double-transition metal MXenes are a subfamily of MXenes that enable significant tunability in properties by changing the MXenes transition metal compositions. The research, supported by the Solid State and Materials Chemistry program in the Division of Materials Research, aims to design, synthesize, and characterize a new family of 2D double-transition metal carbides: rare-earth (RE) f-element 2D MXenes opening the possibility of magnetic properties. This will be accomplished via a synergistic combination of theory and experiments. The overarching goal of this project is to develop a fundamental understanding of how different rare-earth elements can be incorporated into MXenes and use it to control the electronic, optical, and magnetic properties of these novel phases. The limiting factor hindering f-element MXenes is their synthesis that requires the design of novel f-element MAX phase precursors among the large compositional space. This project uses high-throughput first principles and thermodynamic calculations to identify stable precursors and their MXenes and use data science tools to guide experimental efforts. Rare-earth f-element MXenes can have radically different properties that have never been measured in regular MXenes and are absent in other 2D and bulk materials. Rare-earth MXenes can have potential applications from EMI shielding, optoelectronics, and catalysis to quantum computation, spintronics, and magnetoelectronics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术总结,对更高的计算能力和数据存储的需求不断增加,同时减少功耗和碳足迹需要新材料和计算范式。几十年来,当我们“用完原子用完”时,电子设备目前正达到传统材料的尽头,这一事实突显了这一需求。二维(2D)材料是一类新的由几张原子纸组成的新型材料,为应对这些挑战提供了一个平台。特别有趣的是2D过渡金属卡本,称为MXENES,由两到四个原子层的过渡金属层组成,这些金属被原子的碳分离。 MXENES是针对各种应用的研究,包括能量存储和生成,阻断电磁波和天线。尽管取得了重大进展,但对于量子计算,计算机记忆和Spintronics来说,室温磁性仍然难以捉摸。 With this project, supported by the Solid State and Materials Chemistry program in the Division of Materials Research, Professor Babak Anasori at Indiana University Purdue University Indianapolis and Professor Alejandro Strachan at Purdue University and their research groups will design and fabricate novel 2D MXenes that contain rare-earth elements, such as neodymium and gadolinium, and develop a fundamental understanding of how such elements can be used to control the electronic,这些材料的磁性和光学特性。计算建模用于指导这些新材料的实验设计,并将实验数量减少为最有希望的候选者。团队假设在MXENES中使用稀土元素可能会导致第一座室温2D磁铁。为了加速创新,将为在线计算的研究人员和教育工作者访问所有产生的实验和理论结果和模型。纳米材料和2D材料的微观图像已用于许多纳米ARTATION(例如纳米分段)中,以促进茎。 NanoArt图像将集成到当地的纳米科学外展活动中,例如普渡大学的纳米模型,以激励动机的艺术热情儿童,有机会了解Nanoart图像背后的科学和工程图像。技术摘要2D过渡金属碳化物MXENES已成为过去十年来最大的2D材料家族之一。 MXENE具有金属电导率,是亲水性的,能够插入许多离子和有机分子,从而在诸如储能,电子干扰(EMI)屏蔽,无线通信,催化和生物医学等应用中取得了出色的性能。双转变金属MXENES是MXENES的亚家族,通过更改MXENES过渡金属组成,可以在性质中具有明显的隧道性。这项研究得到了材料研究部的固态和材料化学计划的支持,旨在设计,合成和表征一个新的2D双转变金属碳化物的家族:稀土(RE)F元素2D MXENES开放磁性特性的可能性。这将通过协同作用来实现该项目的总体目标是对如何将不同的稀土元素纳入MXENES并使用它来控制这些新型相的电子,光学和磁性。限制因子阻碍F元素MXENES是它们的合成,它需要在大型复合空间中设计新型F元素最大相位前体。该项目使用高通量的第一个稀土MXENES可以具有从未在常规MXENES中测量过的根本不同的特性,并且在其他2D和散装材料中不存在。稀土MXENES可以从EMI屏蔽,光电子和催化到量子计算,Spintronics和Magnetoelectronics的潜在应用。该奖项反映了NSF的法定任务,并已通过评估基金会的知识分子和更广泛的影响来审查Criteria,通过评估来诚实地通过评估来诚实地支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Babak Anasori其他文献

Environmentally stable nanoscale superlubricity of multi-layered Ti<sub>3</sub>C<sub>2</sub>T<sub><em>x</em></sub> MXene
  • DOI:
    10.1016/j.carbon.2023.118284
  • 发表时间:
    2023-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    James Wait;Graham Josephson;Brian C. Wyatt;Babak Anasori;Arzu Çolak
  • 通讯作者:
    Arzu Çolak
Accelerating 2D materials discovery
加速二维材料发现
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    56.9
  • 作者:
    Anupma Thakur;Babak Anasori
  • 通讯作者:
    Babak Anasori
Strong support effect induced by MXene for the synthesis of metal sulfides nanosheet arrays with sulfur vacancies towards selective CO<sub>2</sub>-to-CO photoreduction
  • DOI:
    10.1016/j.scib.2024.07.039
  • 发表时间:
    2024-10-30
  • 期刊:
  • 影响因子:
  • 作者:
    Guanshun Xie;Le Liao;Jie Wang;Peng Zhang;Benhua Xu;Xiuqiang Xie;Chi Chen;Babak Anasori;Nan Zhang
  • 通讯作者:
    Nan Zhang
Rational Design of Two-Dimensional Transition Metal Carbide/Nitride (MXene) Hybrides and Nanocomposites for Catalytic Energy Storage and Conversion
用于催化能量存储和转换的二维过渡金属碳化物/氮化物(MXene)杂化物和纳米复合材料的合理设计
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    17.1
  • 作者:
    Kang Rui Garrick Lim;Albertus D. H;oko;Srinivasa Kartik Nemani;Brian Wyatt;Hai-Ying Jiang;Junwang Tang;Babak Anasori;Zhi Wei Seh
  • 通讯作者:
    Zhi Wei Seh
Reconstruction of fatigue crack growth in AA2024-T3 and AA2198-T8 fastened lap joints
  • DOI:
    10.1016/j.tafmec.2015.06.006
  • 发表时间:
    2016-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    David Stanley;Jonathan Awerbuch;Tein-Min Tan;Babak Anasori
  • 通讯作者:
    Babak Anasori

Babak Anasori的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Babak Anasori', 18)}}的其他基金

Collaborative Research:Theory-guided Design and Discovery of Rare-Earth Element 2D Transition Metal Carbides MXenes (RE-MXenes)
合作研究:稀土元素二维过渡金属碳化物MXenes(RE-MXenes)的理论指导设计与发现
  • 批准号:
    2124478
  • 财政年份:
    2021
  • 资助金额:
    $ 33.73万
  • 项目类别:
    Continuing Grant

相似国自然基金

证券监管一线执法团队的监管效果:基于团队协作理论的研究
  • 批准号:
    72372069
  • 批准年份:
    2023
  • 资助金额:
    42 万元
  • 项目类别:
    面上项目
面向纳米网络的协作式移动分子通信技术及其理论研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
面向纳米网络的协作式移动分子通信技术及其理论研究
  • 批准号:
    62271446
  • 批准年份:
    2022
  • 资助金额:
    55.00 万元
  • 项目类别:
    面上项目
6G空地融合网络的协作安全接入与传输理论研究
  • 批准号:
    62271076
  • 批准年份:
    2022
  • 资助金额:
    54.00 万元
  • 项目类别:
    面上项目
6G空地融合网络的协作安全接入与传输理论研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Design and synthesis of hybrid anode materials made of chemically bonded carbon nanotube to copper: a concerted experiment/theory approach
合作研究:设计和合成由化学键合碳纳米管和铜制成的混合阳极材料:协调一致的实验/理论方法
  • 批准号:
    2334039
  • 财政年份:
    2024
  • 资助金额:
    $ 33.73万
  • 项目类别:
    Continuing Grant
Collaborative Research: Design and synthesis of hybrid anode materials made of chemically bonded carbon nanotube to copper: a concerted experiment/theory approach
合作研究:设计和合成由化学键合碳纳米管和铜制成的混合阳极材料:协调一致的实验/理论方法
  • 批准号:
    2334040
  • 财政年份:
    2024
  • 资助金额:
    $ 33.73万
  • 项目类别:
    Continuing Grant
Collaborative Research: Advances in the Theory and Practice of Non-Euclidean Statistics
合作研究:非欧几里得统计理论与实践的进展
  • 批准号:
    2311058
  • 财政年份:
    2023
  • 资助金额:
    $ 33.73万
  • 项目类别:
    Continuing Grant
Collaborative Research: CIF: Small: Theory for Learning Lossless and Lossy Coding
协作研究:CIF:小型:学习无损和有损编码的理论
  • 批准号:
    2324396
  • 财政年份:
    2023
  • 资助金额:
    $ 33.73万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: New Directions and Approaches in Discrepancy Theory
合作研究:AF:小:差异理论的新方向和方法
  • 批准号:
    2327010
  • 财政年份:
    2023
  • 资助金额:
    $ 33.73万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了