CAREER: Advancing Constrained and Non-Convex Learning
职业:推进约束和非凸学习
基本信息
- 批准号:2246753
- 负责人:
- 金额:$ 52.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2024-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Machine learning has emerged to be an indispensable tool for addressing many decision-making problems, e.g., autonomous driving. As applications of machine learning algorithms for decision-making broaden and diversify, the requirements on security, fairness, interpretability and generalization have been pushed to higher standards. These emerging issues have brought great challenges to the design of machine learning algorithms in the presence of big and complex data. Traditional machine learning methods by minimizing an unconstrained or simply constrained convex objective have become increasingly unsatisfactory. This project seeks to advance learning with complex objectives and constraints by designing and analyzing efficient and effective optimization algorithms for addressing computational challenges in new machine learning paradigms. The project will enhance the ability to solve large-scale, real-world problems from more diverse and broad applications. Furthermore, the project will strive to communicate the significance of machine learning and optimization and provide excellent research experience to students at different levels.Although both constrained optimization and non-convex optimization have been studied and applied to machine learning in the literature, great challenges and many problems remain unaddressed. The primary focus of this project is to design and analyze a set of efficient optimization algorithms and statistical learning methods for advancing machine learning with complex objectives and constraints at large scale. The technical aims of the project are divided into two thrusts. The first thrust is to (i) develop faster and provable stochastic algorithms for learning with complicated non-convex objectives, and (ii) improve the generalization performance of deep learning by advanced regularization and compression methods through design of efficient optimization algorithms. The second thrust is to (i) design computationally efficient constrained optimization algorithms for learning with complicated and complex constraints, and (ii) investigate their applications in adversarial learning, fair learning, interpretable learning, etc. The optimization tools and techniques developed will enable more advanced regularization and loss minimization methods in machine learning, and should greatly influence other areas, such as operations research, signal processing, data mining, etc.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机器学习已成为解决许多决策问题的必不可少的工具,例如自动驾驶。随着机器学习算法在决策中的应用扩大和多样化,对安全性,公平性,解释性和概括的要求已被推向更高的标准。这些新兴问题在存在大型和复杂数据的情况下为机器学习算法设计带来了巨大的挑战。 传统的机器学习方法通过最大程度地减少不受约束或简单的约束凸目标的方法变得越来越令人满意。该项目旨在通过设计和分析有效有效的优化算法来解决新机器学习范式中的计算挑战,从而通过复杂的目标和约束来提高学习。该项目将增强从更多样化和广泛应用中解决大规模,现实世界中的问题的能力。此外,该项目将努力传达机器学习和优化的重要性,并为不同级别的学生提供出色的研究经验。尽管已研究了受限的优化和非convex优化,并将其应用于文献中的机器学习,巨大的挑战,许多问题仍然尚未得到解决。该项目的主要重点是设计和分析一系列有效的优化算法和统计学习方法,以大规模地使用复杂的目标和约束来推进机器学习。该项目的技术目标分为两个推力。第一个推力是(i)通过复杂的非凸目标来开发用于学习的速度更快,可证明的随机算法,用于学习,(ii)通过设计有效的优化算法,通过高级正则化和压缩方法来改善深度学习的概括性能。第二个力量是(i)设计计算有效的约束优化算法,以进行复杂且复杂的约束,以及(ii)调查它们在对抗性学习,公平学习,可解释的学习等方面的应用。开发的优化工具和技术将启用更高级的正则化和损失方法。法定任务,并被认为是值得通过基金会的智力优点和更广泛影响的审查标准来评估的值得支持的。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multi-block-Single-probe Variance Reduced Estimator for Coupled Compositional Optimization
- DOI:10.48550/arxiv.2207.08540
- 发表时间:2022-07
- 期刊:
- 影响因子:0
- 作者:Wei Jiang;Gang Li;Yibo Wang-;Lijun Zhang;Tianbao Yang
- 通讯作者:Wei Jiang;Gang Li;Yibo Wang-;Lijun Zhang;Tianbao Yang
Large-scale Optimization of Partial AUC in a Range of False Positive Rates
- DOI:10.48550/arxiv.2203.01505
- 发表时间:2022-03
- 期刊:
- 影响因子:0
- 作者:Yao Yao-Yao;Qihang Lin;Tianbao Yang
- 通讯作者:Yao Yao-Yao;Qihang Lin;Tianbao Yang
Memory-Based Optimization Methods for Model-Agnostic Meta-Learning and Personalized Federated Learning
- DOI:
- 发表时间:2021-06
- 期刊:
- 影响因子:0
- 作者:Bokun Wang;Zhuoning Yuan;Yiming Ying;Tianbao Yang
- 通讯作者:Bokun Wang;Zhuoning Yuan;Yiming Ying;Tianbao Yang
Multi-block Min-max Bilevel Optimization with Applications in Multi-task Deep AUC Maximization
- DOI:10.48550/arxiv.2206.00260
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:Quanqi Hu;Yongjian Zhong;Tianbao Yang
- 通讯作者:Quanqi Hu;Yongjian Zhong;Tianbao Yang
Stochastic Methods for AUC Optimization subject to AUC-based Fairness Constraints
- DOI:10.48550/arxiv.2212.12603
- 发表时间:2022-12
- 期刊:
- 影响因子:0
- 作者:Yao Yao-Yao;Qihang Lin;Tianbao Yang
- 通讯作者:Yao Yao-Yao;Qihang Lin;Tianbao Yang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tianbao Yang其他文献
Deep AUC Maximization for Medical Image Classification: Challenges and Opportunities
- DOI:
- 发表时间:
2021-11 - 期刊:
- 影响因子:0
- 作者:
Tianbao Yang - 通讯作者:
Tianbao Yang
Evolution of the morphological, structural, and molecular properties of gluten protein in dough with different hydration levels during mixing.
- DOI:
10.1016/j.fochx.2022.100448 - 发表时间:
2022-10-30 - 期刊:
- 影响因子:6.1
- 作者:
Ruobing Jia;Mengli Zhang;Tianbao Yang;Meng Ma;Qingjie Sun;Man Li - 通讯作者:
Man Li
Improved bounds for the Nystrm method with application to kernel classification
改进 Nystr 的界限
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:2.5
- 作者:
Rong Jin;Tianbao Yang;Mehrdad Mahdavi;Yu-Feng Li;Zhi-Hua Zhou - 通讯作者:
Zhi-Hua Zhou
UV-Light-Induced Dehydrogenative N-Acylation of Amines with 2-Nitrobenzaldehydes to Give 2-Aminobenzamides
紫外线诱导胺与 2-硝基苯甲醛脱氢 N-酰化生成 2-氨基苯甲酰胺
- DOI:
10.1055/a-1736-4388 - 发表时间:
2022-01 - 期刊:
- 影响因子:0
- 作者:
Dishu Zeng;Tianbao Yang;Niu Tang;Wei Deng;Jiannan Xiang;Shuang-Feng Yin;Nobuaki Kambe;Renhua Qiu - 通讯作者:
Renhua Qiu
Regret bounded by gradual variation for online convex optimization
在线凸优化的渐进变化所带来的遗憾
- DOI:
10.1007/s10994-013-5418-8 - 发表时间:
2014 - 期刊:
- 影响因子:7.5
- 作者:
Tianbao Yang;M. Mahdavi;Rong Jin;Shenghuo Zhu - 通讯作者:
Shenghuo Zhu
Tianbao Yang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tianbao Yang', 18)}}的其他基金
Collaborative Research:SCH:Bimodal Interpretable Multi-Instance Medical-Image Classification
合作研究:SCH:双峰可解释多实例医学图像分类
- 批准号:
2306572 - 财政年份:2023
- 资助金额:
$ 52.91万 - 项目类别:
Standard Grant
FAI: Advancing Optimization for Threshold-Agnostic Fair AI Systems
FAI:推进与阈值无关的公平人工智能系统的优化
- 批准号:
2147253 - 财政年份:2022
- 资助金额:
$ 52.91万 - 项目类别:
Standard Grant
Collaborative Research: RI: Small: Robust Deep Learning with Big Imbalanced Data
合作研究:RI:小型:具有大不平衡数据的鲁棒深度学习
- 批准号:
2246756 - 财政年份:2022
- 资助金额:
$ 52.91万 - 项目类别:
Continuing Grant
FAI: Advancing Optimization for Threshold-Agnostic Fair AI Systems
FAI:推进与阈值无关的公平人工智能系统的优化
- 批准号:
2246757 - 财政年份:2022
- 资助金额:
$ 52.91万 - 项目类别:
Standard Grant
Collaborative Research: RI: Small: Robust Deep Learning with Big Imbalanced Data
合作研究:RI:小型:具有大不平衡数据的鲁棒深度学习
- 批准号:
2110545 - 财政年份:2021
- 资助金额:
$ 52.91万 - 项目类别:
Continuing Grant
CAREER: Advancing Constrained and Non-Convex Learning
职业:推进约束和非凸学习
- 批准号:
1844403 - 财政年份:2019
- 资助金额:
$ 52.91万 - 项目类别:
Continuing Grant
Collaborative Research: Online Data Stream Fusion and Deep Learning for Virtual Meter in Smart Power Distribution Systems
合作研究:智能配电系统中虚拟电表的在线数据流融合和深度学习
- 批准号:
1933212 - 财政年份:2019
- 资助金额:
$ 52.91万 - 项目类别:
Standard Grant
CRII: III: Scaling up Distance Metric Learning for Large-scale Ultrahigh-dimensional Data
CRII:III:扩大大规模超高维数据的距离度量学习
- 批准号:
1463988 - 财政年份:2015
- 资助金额:
$ 52.91万 - 项目类别:
Standard Grant
BIGDATA: F: New Algorithms of Online Machine Learning for Big Data
BIGDATA:F:大数据在线机器学习的新算法
- 批准号:
1545995 - 财政年份:2015
- 资助金额:
$ 52.91万 - 项目类别:
Standard Grant
相似国自然基金
果蝇幼虫前进运动发起的神经机制
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
果蝇幼虫前进运动发起的神经机制
- 批准号:32271041
- 批准年份:2022
- 资助金额:54.00 万元
- 项目类别:面上项目
机器人鸟“前进”运动控制神经信息传导通路及反馈研究
- 批准号:61903230
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
内蒙古中东部毛登-前进场早石炭世强过铝花岗岩带地球化学成因及其构造意义
- 批准号:41702054
- 批准年份:2017
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
搅拌摩擦焊接过程前进阻力周期脉动振荡行为及调控研究
- 批准号:51675248
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
相似海外基金
Advancing Governance and Resilience for Climate Adaptation through Cultural Heritage (AGREE)
通过文化遗产促进气候适应的治理和抵御能力(同意)
- 批准号:
AH/Z000017/1 - 财政年份:2024
- 资助金额:
$ 52.91万 - 项目类别:
Research Grant
Advancing Child and Youth-led Climate Change Education with Country
与国家一起推进儿童和青少年主导的气候变化教育
- 批准号:
DP240100968 - 财政年份:2024
- 资助金额:
$ 52.91万 - 项目类别:
Discovery Projects
Governing Sustainable Futures: Advancing the use of Participatory Mechanisms for addressing Place-based Contestations of Sustainable Living
治理可持续未来:推进利用参与机制来解决基于地方的可持续生活竞赛
- 批准号:
ES/Z502789/1 - 财政年份:2024
- 资助金额:
$ 52.91万 - 项目类别:
Research Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
- 批准号:
2342498 - 财政年份:2024
- 资助金额:
$ 52.91万 - 项目类别:
Standard Grant
HSI Implementation and Evaluation Project: Green Chemistry: Advancing Equity, Relevance, and Environmental Justice
HSI 实施和评估项目:绿色化学:促进公平、相关性和环境正义
- 批准号:
2345355 - 财政年份:2024
- 资助金额:
$ 52.91万 - 项目类别:
Continuing Grant