Collaborative Research: RI: Small: Robust Deep Learning with Big Imbalanced Data
合作研究:RI:小型:具有大不平衡数据的鲁棒深度学习
基本信息
- 批准号:2110545
- 负责人:
- 金额:$ 26.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2022-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project promotes the progress of science and technology development by advancing artificial intelligence (AI) through innovations in scalable and robust computational methods. AI, especially deep learning, has brought transformative impact in industries and quantum leaps in the quality of a wide range of everyday technologies including face recognition, speech recognition and machine translation. However, in order to accelerate the democratization of AI there are still many challenges to be addressed including data issues and model issues. This project seeks to advance AI by addressing one critical issue related to data; i.e., data imbalance. This happens when the collected data for training AI models does not have enough instances representing some property the models are trying to learn. For example, molecules with a certain antibacterial property would be far fewer than all possible molecules making predictions of antibacterial properties challenging. The goal of this project is to develop algorithms with theoretical guarantees to make AI learn more effectively from the big imbalanced data. This project will also contribute to training future professionals in AI and machine learning, including training high school students and under-represented undergraduates. This project investigates a broad family of robust losses for deep learning. The research activities include (i) developing scalable offline stochastic algorithms for solving non-decomposable robust losses that are formulated into min-max, min-min formulations; (ii) developing efficient online stochastic algorithms for solving a family of distributionally robust optimization problems that are cast into compositional optimization problems; (iii) developing effective strategies for training deep neural networks by solving the considered non-decomposable robust losses; (iv) establishing the underlying theory including optimization and statistical convergence of the proposed algorithms. The algorithms are being evaluated on big imbalanced data such as images, graphs, texts.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目通过以可扩展且强大的计算方法的创新来推进人工智能(AI),从而促进了科学技术发展的进步。 AI,尤其是深度学习,对行业产生了变革性的影响,并在各种日常技术的质量中跳跃,包括面部识别,语音识别和机器翻译。但是,为了加速AI的民主化,仍然存在许多挑战,包括数据问题和模型问题。该项目旨在通过解决与数据相关的一个关键问题来推进AI;即数据不平衡。当收集的用于培训AI模型的数据没有足够代表模型试图学习的某些属性的实例时,就会发生这种情况。例如,具有某种抗菌特性的分子将少于所有可能的分子,这些分子对抗菌特性的预测提出了挑战。该项目的目的是开发具有理论保证的算法,以使AI从大型不平衡数据中更有效地学习。该项目还将有助于培训未来的AI和机器学习专业人员,包括培训高中生和代表性不足的本科生。 该项目调查了一个广泛的深度学习损失家庭。研究活动包括(i)开发可扩展的离线随机算法,以解决将非解释的稳健损失分为最小,最小米尔的制剂; (ii)开发有效的在线随机算法,以解决一个分配强大的优化问题,这些问题被置于组成优化问题中; (iii)通过解决考虑的非解释稳健损失来制定训练深神经网络的有效策略; (iv)建立基本理论,包括所提出算法的优化和统计收敛。该算法正在对大型不平衡数据(例如图像,图形,文本)进行评估。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛的影响评估标准通过评估来支持的。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An Online Method for Distributionally Deep Robust Optimization
- DOI:
- 发表时间:2020-06
- 期刊:
- 影响因子:0
- 作者:Qi Qi-Qi;Zhishuai Guo;Yi Xu;Rong Jin;Tianbao Yang
- 通讯作者:Qi Qi-Qi;Zhishuai Guo;Yi Xu;Rong Jin;Tianbao Yang
An Online Method for A Class of Distributionally Robust Optimization with Non-convex Objectives
- DOI:
- 发表时间:2020-06
- 期刊:
- 影响因子:0
- 作者:Qi Qi-Qi;Zhishuai Guo;Yi Xu;Rong Jin;Tianbao Yang
- 通讯作者:Qi Qi-Qi;Zhishuai Guo;Yi Xu;Rong Jin;Tianbao Yang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tianbao Yang其他文献
Improved bounds for the Nystrm method with application to kernel classification
改进 Nystr 的界限
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:2.5
- 作者:
Rong Jin;Tianbao Yang;Mehrdad Mahdavi;Yu-Feng Li;Zhi-Hua Zhou - 通讯作者:
Zhi-Hua Zhou
Deep AUC Maximization for Medical Image Classification: Challenges and Opportunities
- DOI:
- 发表时间:
2021-11 - 期刊:
- 影响因子:0
- 作者:
Tianbao Yang - 通讯作者:
Tianbao Yang
Evolution of the morphological, structural, and molecular properties of gluten protein in dough with different hydration levels during mixing.
- DOI:
10.1016/j.fochx.2022.100448 - 发表时间:
2022-10-30 - 期刊:
- 影响因子:6.1
- 作者:
Ruobing Jia;Mengli Zhang;Tianbao Yang;Meng Ma;Qingjie Sun;Man Li - 通讯作者:
Man Li
UV-Light-Induced Dehydrogenative N-Acylation of Amines with 2-Nitrobenzaldehydes to Give 2-Aminobenzamides
紫外线诱导胺与 2-硝基苯甲醛脱氢 N-酰化生成 2-氨基苯甲酰胺
- DOI:
10.1055/a-1736-4388 - 发表时间:
2022-01 - 期刊:
- 影响因子:0
- 作者:
Dishu Zeng;Tianbao Yang;Niu Tang;Wei Deng;Jiannan Xiang;Shuang-Feng Yin;Nobuaki Kambe;Renhua Qiu - 通讯作者:
Renhua Qiu
Regret bounded by gradual variation for online convex optimization
在线凸优化的渐进变化所带来的遗憾
- DOI:
10.1007/s10994-013-5418-8 - 发表时间:
2014 - 期刊:
- 影响因子:7.5
- 作者:
Tianbao Yang;M. Mahdavi;Rong Jin;Shenghuo Zhu - 通讯作者:
Shenghuo Zhu
Tianbao Yang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tianbao Yang', 18)}}的其他基金
Collaborative Research:SCH:Bimodal Interpretable Multi-Instance Medical-Image Classification
合作研究:SCH:双峰可解释多实例医学图像分类
- 批准号:
2306572 - 财政年份:2023
- 资助金额:
$ 26.43万 - 项目类别:
Standard Grant
FAI: Advancing Optimization for Threshold-Agnostic Fair AI Systems
FAI:推进与阈值无关的公平人工智能系统的优化
- 批准号:
2147253 - 财政年份:2022
- 资助金额:
$ 26.43万 - 项目类别:
Standard Grant
Collaborative Research: RI: Small: Robust Deep Learning with Big Imbalanced Data
合作研究:RI:小型:具有大不平衡数据的鲁棒深度学习
- 批准号:
2246756 - 财政年份:2022
- 资助金额:
$ 26.43万 - 项目类别:
Continuing Grant
CAREER: Advancing Constrained and Non-Convex Learning
职业:推进约束和非凸学习
- 批准号:
2246753 - 财政年份:2022
- 资助金额:
$ 26.43万 - 项目类别:
Continuing Grant
FAI: Advancing Optimization for Threshold-Agnostic Fair AI Systems
FAI:推进与阈值无关的公平人工智能系统的优化
- 批准号:
2246757 - 财政年份:2022
- 资助金额:
$ 26.43万 - 项目类别:
Standard Grant
CAREER: Advancing Constrained and Non-Convex Learning
职业:推进约束和非凸学习
- 批准号:
1844403 - 财政年份:2019
- 资助金额:
$ 26.43万 - 项目类别:
Continuing Grant
Collaborative Research: Online Data Stream Fusion and Deep Learning for Virtual Meter in Smart Power Distribution Systems
合作研究:智能配电系统中虚拟电表的在线数据流融合和深度学习
- 批准号:
1933212 - 财政年份:2019
- 资助金额:
$ 26.43万 - 项目类别:
Standard Grant
CRII: III: Scaling up Distance Metric Learning for Large-scale Ultrahigh-dimensional Data
CRII:III:扩大大规模超高维数据的距离度量学习
- 批准号:
1463988 - 财政年份:2015
- 资助金额:
$ 26.43万 - 项目类别:
Standard Grant
BIGDATA: F: New Algorithms of Online Machine Learning for Big Data
BIGDATA:F:大数据在线机器学习的新算法
- 批准号:
1545995 - 财政年份:2015
- 资助金额:
$ 26.43万 - 项目类别:
Standard Grant
相似国自然基金
跨膜蛋白LRP5胞外域调控膜受体TβRI促钛表面BMSCs归巢、分化的研究
- 批准号:82301120
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Dectin-2通过促进FcεRI聚集和肥大细胞活化加剧哮喘发作的机制研究
- 批准号:82300022
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
TβRI的UFM化修饰调控TGF-β信号通路和乳腺癌转移的作用及机制研究
- 批准号:32200568
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
藏药甘肃蚤缀β-咔啉生物碱类TβRI抑制剂的发现及其抗肺纤维化作用机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
藏药甘肃蚤缀β-咔啉生物碱类TβRI抑制剂的发现及其抗肺纤维化作用机制研究
- 批准号:82204762
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312841 - 财政年份:2023
- 资助金额:
$ 26.43万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312842 - 财政年份:2023
- 资助金额:
$ 26.43万 - 项目类别:
Standard Grant
Collaborative Research: RI: Small: Foundations of Few-Round Active Learning
协作研究:RI:小型:少轮主动学习的基础
- 批准号:
2313131 - 财政年份:2023
- 资助金额:
$ 26.43万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
- 批准号:
2313151 - 财政年份:2023
- 资助金额:
$ 26.43万 - 项目类别:
Continuing Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312840 - 财政年份:2023
- 资助金额:
$ 26.43万 - 项目类别:
Standard Grant