Collaborative Research:SCH:Bimodal Interpretable Multi-Instance Medical-Image Classification
合作研究:SCH:双峰可解释多实例医学图像分类
基本信息
- 批准号:2306572
- 负责人:
- 金额:$ 85.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project focuses on creating a smarter artificial-intelligence (AI) system to better understand and analyze complex medical images, such as those from multiple scans of a patient. Traditional methods have had some success but face challenges in dealing with rare diseases and in providing explanations that doctors and patients can easily understand. This project aims to develop a modern AI approach that overcomes these limitations by leveraging a vast collection of medical images and doctors' notes, regardless of the specific health conditions to which they pertain. The research team will tackle various challenges to make the AI system more scalable, interpretable, and robust. This innovative project will deliver trustworthy AI-driven diagnostic tools to medical workers, expediting the diagnostic process for complex medical images. The impact of this project will be felt broadly in AI research and beyond, as its foundational research is likely to have impact in various applications, and its use-inspired research will enable the accelerated transition of modern AI approaches into benefits for society. The approach to achieve the overarching goal is to develop a bimodal interpretable multi-instance medical image classification framework by a scalable pretraining and finetuning approach. The framework consists of bimodal prototype-based interpretable contrastive pretraining to learn paired image and text prototypes from imbalanced unlabeled data, and multi-instance learning by deep area-under-the-receiver-operator-curve (AUC) maximization methods to learn from imbalanced patient-level labeled data. To make contrastive pretraining scalable and robust to imbalanced data, the investigators will develop a unified framework based on partial AUC losses, which not only unifies the existing contrastive loss but also induces new advanced global contrastive losses. The team of researchers will leverage new optimization tools and develop improved stochastic algorithms with mathematical guarantee without dependence on the large batch size of existing methods. To make multi-instance learning scalable and robust to imbalanced data, the investigators propose efficient stochastic algorithms for multi-instance deep AUC maximization by developing stochastic pooling operations from the lens of multi-level compositional optimization. The investigators will not only employ standard performance metrics for evaluation but will also leverage the domain expertise from radiologists to evaluate model performance and interpretability. The investigators will disseminate results through publications, open-source software, tutorials, workshops, and course materials, additionally engaging in outreach initiatives to enhance STEM learning and foster greater interest in the field.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目着重于创建更智能的人工智能(AI)系统,以更好地理解和分析复杂的医学图像,例如来自患者的多次扫描。传统方法取得了一些成功,但是在处理罕见疾病的情况下面临挑战,并提供了医生和患者可以轻松理解的解释。该项目旨在开发一种现代的AI方法,该方法通过利用大量医学图像和医生的注释来克服这些局限性,而与它们有关的特定健康状况如何。研究团队将应对各种挑战,以使AI系统更可扩展,可解释和健壮。这个创新的项目将向医务人员提供值得信赖的AI驱动诊断工具,从而加快复杂医疗图像的诊断过程。由于其基础研究可能会对各种应用产生影响,因此在AI研究中,该项目的影响将广泛地感受到,其使用启发的研究将使现代AI方法加速过渡到对社会的利益。 实现总体目标的方法是通过可扩展的预处理和填充方法来开发双峰解释的多企业医学图像分类框架。该框架包括基于双峰原型的可解释的对比度预处理,以从不平衡的未标记数据中学习配对的图像和文本原型,以及通过深度领域的接收者 - 操作员曲线(AUC)最大化方法的多启示性学习,以从不平衡的患者标记的标记标记的数据中学习。为了使对比预处理可扩展和强大的数据,研究人员将基于部分AUC损失开发统一的框架,这不仅统一了现有的对比损失,而且还会引起新的先进的全球对比度损失。研究人员团队将利用新的优化工具,并通过数学保证开发改进的随机算法,而不必依赖现有方法的批次大小。为了使多个数据可扩展和强大的数据对数据不平衡,研究人员提出了有效的随机算法,用于通过开发从多层组成优化的镜头开发随机合并操作,以最大程度地最大化多效性AUC最大化。研究人员不仅将采用标准绩效指标进行评估,还将利用放射科医生的域专业知识来评估模型性能和解释性。调查人员将通过出版物,开源软件,教程,讲习班和课程材料来传播结果,并还参与宣传计划,以增强STEM学习并促进对现场的更大兴趣。该奖项反映了NSF的法定任务,并通过使用该基金会的知识分子功能和广泛的影响来评估NSF的法定任务,并被视为值得的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tianbao Yang其他文献
Improved bounds for the Nystrm method with application to kernel classification
改进 Nystr 的界限
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:2.5
- 作者:
Rong Jin;Tianbao Yang;Mehrdad Mahdavi;Yu-Feng Li;Zhi-Hua Zhou - 通讯作者:
Zhi-Hua Zhou
Deep AUC Maximization for Medical Image Classification: Challenges and Opportunities
- DOI:
- 发表时间:
2021-11 - 期刊:
- 影响因子:0
- 作者:
Tianbao Yang - 通讯作者:
Tianbao Yang
Evolution of the morphological, structural, and molecular properties of gluten protein in dough with different hydration levels during mixing.
- DOI:
10.1016/j.fochx.2022.100448 - 发表时间:
2022-10-30 - 期刊:
- 影响因子:6.1
- 作者:
Ruobing Jia;Mengli Zhang;Tianbao Yang;Meng Ma;Qingjie Sun;Man Li - 通讯作者:
Man Li
UV-Light-Induced Dehydrogenative N-Acylation of Amines with 2-Nitrobenzaldehydes to Give 2-Aminobenzamides
紫外线诱导胺与 2-硝基苯甲醛脱氢 N-酰化生成 2-氨基苯甲酰胺
- DOI:
10.1055/a-1736-4388 - 发表时间:
2022-01 - 期刊:
- 影响因子:0
- 作者:
Dishu Zeng;Tianbao Yang;Niu Tang;Wei Deng;Jiannan Xiang;Shuang-Feng Yin;Nobuaki Kambe;Renhua Qiu - 通讯作者:
Renhua Qiu
Regret bounded by gradual variation for online convex optimization
在线凸优化的渐进变化所带来的遗憾
- DOI:
10.1007/s10994-013-5418-8 - 发表时间:
2014 - 期刊:
- 影响因子:7.5
- 作者:
Tianbao Yang;M. Mahdavi;Rong Jin;Shenghuo Zhu - 通讯作者:
Shenghuo Zhu
Tianbao Yang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tianbao Yang', 18)}}的其他基金
FAI: Advancing Optimization for Threshold-Agnostic Fair AI Systems
FAI:推进与阈值无关的公平人工智能系统的优化
- 批准号:
2147253 - 财政年份:2022
- 资助金额:
$ 85.5万 - 项目类别:
Standard Grant
Collaborative Research: RI: Small: Robust Deep Learning with Big Imbalanced Data
合作研究:RI:小型:具有大不平衡数据的鲁棒深度学习
- 批准号:
2246756 - 财政年份:2022
- 资助金额:
$ 85.5万 - 项目类别:
Continuing Grant
CAREER: Advancing Constrained and Non-Convex Learning
职业:推进约束和非凸学习
- 批准号:
2246753 - 财政年份:2022
- 资助金额:
$ 85.5万 - 项目类别:
Continuing Grant
FAI: Advancing Optimization for Threshold-Agnostic Fair AI Systems
FAI:推进与阈值无关的公平人工智能系统的优化
- 批准号:
2246757 - 财政年份:2022
- 资助金额:
$ 85.5万 - 项目类别:
Standard Grant
Collaborative Research: RI: Small: Robust Deep Learning with Big Imbalanced Data
合作研究:RI:小型:具有大不平衡数据的鲁棒深度学习
- 批准号:
2110545 - 财政年份:2021
- 资助金额:
$ 85.5万 - 项目类别:
Continuing Grant
CAREER: Advancing Constrained and Non-Convex Learning
职业:推进约束和非凸学习
- 批准号:
1844403 - 财政年份:2019
- 资助金额:
$ 85.5万 - 项目类别:
Continuing Grant
Collaborative Research: Online Data Stream Fusion and Deep Learning for Virtual Meter in Smart Power Distribution Systems
合作研究:智能配电系统中虚拟电表的在线数据流融合和深度学习
- 批准号:
1933212 - 财政年份:2019
- 资助金额:
$ 85.5万 - 项目类别:
Standard Grant
CRII: III: Scaling up Distance Metric Learning for Large-scale Ultrahigh-dimensional Data
CRII:III:扩大大规模超高维数据的距离度量学习
- 批准号:
1463988 - 财政年份:2015
- 资助金额:
$ 85.5万 - 项目类别:
Standard Grant
BIGDATA: F: New Algorithms of Online Machine Learning for Big Data
BIGDATA:F:大数据在线机器学习的新算法
- 批准号:
1545995 - 财政年份:2015
- 资助金额:
$ 85.5万 - 项目类别:
Standard Grant
相似国自然基金
支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
- 批准号:62371263
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
腙的Heck/脱氮气重排串联反应研究
- 批准号:22301211
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
- 批准号:52364038
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
- 批准号:82371176
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
- 批准号:82305286
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: SCH: Improving Older Adults' Mobility and Gait Ability in Real-World Ambulation with a Smart Robotic Ankle-Foot Orthosis
合作研究:SCH:使用智能机器人踝足矫形器提高老年人在现实世界中的活动能力和步态能力
- 批准号:
2306660 - 财政年份:2023
- 资助金额:
$ 85.5万 - 项目类别:
Standard Grant
Collaborative Research: SCH: A wireless optoelectronic implant for closed-loop control of bi-hormone secretion from genetically modified islet organoid grafts
合作研究:SCH:一种无线光电植入物,用于闭环控制转基因胰岛类器官移植物的双激素分泌
- 批准号:
2306708 - 财政年份:2023
- 资助金额:
$ 85.5万 - 项目类别:
Standard Grant
Collaborative Research: SCH: AI-driven RFID Sensing for Smart Health Applications
合作研究:SCH:面向智能健康应用的人工智能驱动的 RFID 传感
- 批准号:
2306790 - 财政年份:2023
- 资助金额:
$ 85.5万 - 项目类别:
Standard Grant
Collaborative Research: SCH: Improving Older Adults' Mobility and Gait Ability in Real-World Ambulation with a Smart Robotic Ankle-Foot Orthosis
合作研究:SCH:使用智能机器人踝足矫形器提高老年人在现实世界中的活动能力和步态能力
- 批准号:
2306659 - 财政年份:2023
- 资助金额:
$ 85.5万 - 项目类别:
Standard Grant
Collaborative Research: SCH: Therapeutic and Diagnostic System for Inflammatory Bowel Diseases: Integrating Data Science, Synthetic Biology, and Additive Manufacturing
合作研究:SCH:炎症性肠病的治疗和诊断系统:整合数据科学、合成生物学和增材制造
- 批准号:
2306740 - 财政年份:2023
- 资助金额:
$ 85.5万 - 项目类别:
Standard Grant