Collaborative Research: CIF: Small: Interpretable Fair Machine Learning: Frameworks, Robustness, and Scalable Algorithms
协作研究:CIF:小型:可解释的公平机器学习:框架、稳健性和可扩展算法
基本信息
- 批准号:2246417
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Machine-learning algorithms are revolutionizing modern decision-making processes, from deciding job offers, evaluating loans, and determining university enrollments to proposing medical interventions. However, despite the recent success of machine-learning algorithms in solving large-scale problems, serious concerns have been raised that they are not entirely objective and can inadvertently amplify human biases. The proposed research project addresses this fundamental shortcoming by developing scalable data-driven methods and algorithms that generate interpretable policies aiming for provable fairness guarantees. The project will inform the policy-makers or decision-makers about possible outcomes and tradeoffs between machine learning outcomes and social equity/fairness. Furthermore, the research results will provide guidelines to support policies as well as regulations to promote diversity and fairness in many relevant domains of application. The proposed research leverages recent advances in discrete and robust optimization, aiming for solution methodologies that faithfully address the exact learning models with fairness measures, provide strong out-of-sample fairness guarantees, are robust against bias and noisy outliers in the dataset, and can be solved efficiently for large-scale problem instances. More specifically, the proposed research aims to develop effective new frameworks for fair learning via sub-data selection that can leverage past efforts and enhance the fairness in the learning outcomes. Robust solution schemes will be carefully designed to significantly mitigate the severe overfitting effects of empirical-based methods and improve out-of-sample performance. Efforts will also be devoted to addressing algorithmic fairness in multi-stage decision-making and resource-allocation problems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机器学习算法正在彻底改变现代决策过程,从决定工作,评估贷款和确定大学入学率到提出医疗干预措施。但是,尽管机器学习算法最近在解决大规模问题方面取得了成功,但人们严重担心它们并不完全客观,并且会无意中扩大人类偏见。拟议的研究项目通过开发可扩展的数据驱动方法和算法来解决这一基本缺点,这些方法和算法生成了可解释的政策,以实现可证明的公平保证。该项目将向政策制定者或决策者提供有关机器学习成果与社会公平/公平性之间可能的成果和权衡的信息。此外,研究结果将为支持政策和法规提供指南,以促进许多相关应用领域的多样性和公平性。拟议的研究利用了离散和强大优化的最新进展,目的是实现解决方案方法,以公平性措施忠实地解决精确的学习模型,提供强大的样本外公平保证,对数据集中的偏见和嘈杂的异常值具有强大的态度,并且可以有效地解决大规模问题的情况。更具体地说,拟议中的研究旨在通过选项的选择开发有效的新框架,以利用过去的努力并增强学习成果的公平性。强大的解决方案方案将经过仔细设计,以显着减轻基于经验的方法的严重过度拟合效应并改善样本外的性能。努力还将致力于解决多阶段决策和资源分配问题中的算法公平性。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子和更广泛影响的评估评估标准来通过评估来获得支持的。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Distributionally Favorable Optimization: A Framework for Data-Driven Decision-Making with Endogenous Outliers
分布有利优化:具有内生异常值的数据驱动决策框架
- DOI:10.1137/22m1528094
- 发表时间:2024
- 期刊:
- 影响因子:3.1
- 作者:Jiang, Nan;Xie, Weijun
- 通讯作者:Xie, Weijun
D-Optimal Data Fusion: Exact and Approximation Algorithms
- DOI:10.1287/ijoc.2022.0235
- 发表时间:2022-08
- 期刊:
- 影响因子:0
- 作者:Yongchun Li;M. Fampa;Jon Lee;Feng Qiu;Weijun Xie;Rui Yao
- 通讯作者:Yongchun Li;M. Fampa;Jon Lee;Feng Qiu;Weijun Xie;Rui Yao
Smooth Robust Tensor Completion for Background/Foreground Separation with Missing Pixels: Novel Algorithm with Convergence Guarantee
- DOI:10.48550/arxiv.2203.16328
- 发表时间:2022-03
- 期刊:
- 影响因子:0
- 作者:Bo Shen;Weijun Xie;Zhen Kong
- 通讯作者:Bo Shen;Weijun Xie;Zhen Kong
Automated Vehicle Identification Based on Car-Following Data With Machine Learning
- DOI:10.1109/tits.2023.3304607
- 发表时间:2023-12
- 期刊:
- 影响因子:8.5
- 作者:Qianwen Li;Xiaopeng Li;Handong Yao;Zhaohui Liang;Weijun Xie
- 通讯作者:Qianwen Li;Xiaopeng Li;Handong Yao;Zhaohui Liang;Weijun Xie
Best Principal Submatrix Selection for the Maximum Entropy Sampling Problem: Scalable Algorithms and Performance Guarantees
- DOI:10.1287/opre.2023.2488
- 发表时间:2020-01
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Weijun Xie其他文献
Exact and Approximation Algorithms for Sparse Principal Component Analysis
稀疏主成分分析的精确和近似算法
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:2.1
- 作者:
Yongchun Li;Weijun Xie - 通讯作者:
Weijun Xie
On distributionally robust chance constrained programs with Wasserstein distance
- DOI:
10.1007/s10107-019-01445-5 - 发表时间:
2018-06 - 期刊:
- 影响因子:2.7
- 作者:
Weijun Xie - 通讯作者:
Weijun Xie
Approximate Positively Correlated Distributions and Approximation Algorithms for D-optimal Design
D 最优设计的近似正相关分布和近似算法
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Mohit Singh;Weijun Xie - 通讯作者:
Weijun Xie
Distributionally robust bottleneck combinatorial problems: uncertainty quantification and robust decision making
分布鲁棒瓶颈组合问题:不确定性量化和鲁棒决策
- DOI:
10.1007/s10107-021-01627-0 - 发表时间:
2020 - 期刊:
- 影响因子:2.7
- 作者:
Weijun Xie;Jie Zhang;Shabbir Ahmed - 通讯作者:
Shabbir Ahmed
Dynamic Planning of Facility Locations with Benefits from Multitype Facility Colocation
受益于多类型设施托管的设施位置动态规划
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Weijun Xie;Y. Ouyang - 通讯作者:
Y. Ouyang
Weijun Xie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Weijun Xie', 18)}}的其他基金
D-ISN/Collaborative Research: Early Warning Systems for Emerging Epidemics of Illicit Substances
D-ISN/合作研究:非法物质新出现流行病的早期预警系统
- 批准号:
2240409 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Interpretable Fair Machine Learning: Frameworks, Robustness, and Scalable Algorithms
协作研究:CIF:小型:可解释的公平机器学习:框架、稳健性和可扩展算法
- 批准号:
2153607 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CAREER: Favorable Optimization under Distributional Distortions: Frameworks, Algorithms, and Applications
职业:分布扭曲下的有利优化:框架、算法和应用
- 批准号:
2246414 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CAREER: Favorable Optimization under Distributional Distortions: Frameworks, Algorithms, and Applications
职业:分布扭曲下的有利优化:框架、算法和应用
- 批准号:
2046426 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
相似国自然基金
支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
- 批准号:62371263
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
腙的Heck/脱氮气重排串联反应研究
- 批准号:22301211
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
- 批准号:52364038
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
- 批准号:82371176
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
- 批准号:82305286
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
- 批准号:
2403122 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
- 批准号:
2402815 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343599 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343600 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research:CIF:Small:Acoustic-Optic Vision - Combining Ultrasonic Sonars with Visible Sensors for Robust Machine Perception
合作研究:CIF:Small:声光视觉 - 将超声波声纳与可见传感器相结合,实现强大的机器感知
- 批准号:
2326905 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant