Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning

协作研究:CIF:小型:多任务学习的数学和算法基础

基本信息

  • 批准号:
    2343600
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-04-01 至 2027-03-31
  • 项目状态:
    未结题

项目摘要

Reinforcement learning has emerged as one of the predominant frameworks for real-time decision making and control. It has been the driving force behind several recent high-profile successes of artificial intelligence, enjoying success in areas as diverse as robotic control, wireless communications, and protein structure prediction. While reinforcement learning provides a powerful and flexible framework for learning, data efficiency is a fundamental challenge: this framework is known to require significant computational resources and vast amount of data. This challenge limits the applicability of reinforcement learning and keeps it from being applied in problems where training data and computational power are limited, including important applications such as wildfire monitoring and the search-and-rescue of lost people using unmanned aerial vehicles. This project addresses this challenge by developing new mathematical foundations of multi-task reinforcement learning and novel learning algorithms that require less data in the aggregate when multiple tasks are jointly learned. The project integrates the research findings with rigorous educational and outreach activities, course development, and student training. This project focuses on answering two fundamental questions: (1) Under what conditions does it take less data and computation to learn multiple tasks jointly than it would to learn each task individually? and (2) Can reinforcement learning algorithms learn something meaningful with only a limited amount of data and computation? Our approach to answering these questions draws on techniques from online learning, compressed sensing, and stochastic modeling. In particular, this project covers both offline settings, where the similarity structure between tasks is learned from a given data set, and online settings, where this learned structure is used to efficiently adapt to a new task “on the fly”. The project also addresses the fundamental problem of catastrophic forgetting in multi-task learning, where the learned policy loses the ability to perform a previous task after training for a new task. Over the course of this project, the proposed research activities will be evaluated systematically through a series of simulations of multi-robot navigation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
强化学习已成为实时决策和控制的主要框架之一。这一直是最近几项人工智能成功成功的推动力,在机器人控制,无线通信和蛋白质结构预测的潜水区中取得了成功。尽管增强学习为学习提供了一个强大而灵活的框架,但数据效率是一个基本挑战:已知该框架需要大量的计算资源和大量数据。这项挑战限制了强化学习的适用性,并防止将其应用于训练数据和计算能力有限的问题,包括诸如野火监控等重要应用以及使用无人驾驶飞机的失落人员的搜索搜索。该项目通过开发多任务增强学习和新颖学习算法的新数学基础来解决这一挑战,这些学习算法需要在共同学习多个任务时需要较少的总数据。该项目将研究结果与严格的教育和外展活动,课程发展和学生培训相结合。该项目重点是回答两个基本问题:(1)在什么条件下,共同学习多个任务的数据和计算要比单独学习每个任务所需的数据和计算要少? (2)仅通过有限的数据和计算,增强学习算法可以学习有意义的东西吗?我们回答这些问题的方法取决于在线学习,压缩敏感性和随机建模中的技术。特别是,该项目涵盖了两个离线设置,其中任务之间的相似性结构是从给定的数据集和在线设置中学到的,在该设置中,该学习的结构用于“即时”“飞行”。还解决了多任务学习中灾难性遗忘的基本问题,在培训新任务后,学会的政策失去了执行先前任务的能力。在该项目的整个过程中,拟议的研究活动将通过一系列多机器人导航进行系统评估。该奖项反映了NSF的法定任务,并通过使用基金会的知识分子和更广泛的影响审查标准来通过评估来评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Justin Romberg其他文献

Restricted isometries for partial random circulant matrices
  • DOI:
    10.1016/j.acha.2011.05.001
  • 发表时间:
    2012-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Holger Rauhut;Justin Romberg;Joel A. Tropp
  • 通讯作者:
    Joel A. Tropp

Justin Romberg的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Justin Romberg', 18)}}的其他基金

CIF:Small:Model-Based Blind Demixing for Signal Processing and Machine Learning
CIF:Small:用于信号处理和机器学习的基于模型的盲解混
  • 批准号:
    1718771
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CIF: Small: Blind Channel Estimation and Solving Bilinear Equations by Lifting and Factoring
CIF:小:盲通道估计并通过提升和因式分解求解双线性方程
  • 批准号:
    1422540
  • 财政年份:
    2014
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

钛基骨植入物表面电沉积镁氢涂层及其促成骨性能研究
  • 批准号:
    52371195
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
CLMP介导Connexin45-β-catenin复合体对先天性短肠综合征的致病机制研究
  • 批准号:
    82370525
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
人工局域表面等离激元高灵敏传感及其系统小型化的关键技术研究
  • 批准号:
    62371132
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
优先流对中俄原油管道沿线多年冻土水热稳定性的影响机制研究
  • 批准号:
    42301138
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
用于稳定锌负极的界面层/电解液双向调控研究
  • 批准号:
    52302289
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
  • 批准号:
    2403122
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402815
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
  • 批准号:
    2343599
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research:CIF:Small:Acoustic-Optic Vision - Combining Ultrasonic Sonars with Visible Sensors for Robust Machine Perception
合作研究:CIF:Small:声光视觉 - 将超声波声纳与可见传感器相结合,实现强大的机器感知
  • 批准号:
    2326905
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research:CIF:Small:Fisher-Inspired Approach to Quickest Change Detection for Score-Based Models
合作研究:CIF:Small:Fisher 启发的基于评分模型的最快变化检测方法
  • 批准号:
    2334898
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了