CAREER: Favorable Optimization under Distributional Distortions: Frameworks, Algorithms, and Applications
职业:分布扭曲下的有利优化:框架、算法和应用
基本信息
- 批准号:2046426
- 负责人:
- 金额:$ 50.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2022-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This Faculty Early Career Development Program (CAREER) award will support the investigation of new methods to significantly enhance data-driven decision-making under distributional distortions. Data-driven optimization is a commonly used tool in many industries to support complex decision making, but the resulting decisions are often susceptible to poor data quality. Stochastic optimization methods, for example, may be unduly influenced by outliers, while robust optimization methods may provide solutions that are overly cautious. This research project investigates a new framework for data-driven optimization, intended to specifically take into account the sensitivity of solutions to data quality, and to develop methods to improve these decisions. In addition to new undergraduate and graduate-level course modules on optimistic optimization, the educational components of this project include a summer camp module for high school girls interested in STEM, collaboration with a local science museum, and an interactive optimization-based interdiction game. This project will establish theoretical and algorithmic foundations for Distributionally Favorable Optimization (DFO) and investigate its applications to the areas of operations engineering under distributional distortions. Distributionally Favorable Optimization incorporates methods to examine distributional assumption on the input data and select the optimal decision under the most-favorable distribution. Specifically, this research will (i) establish fundamental frameworks for DFO that can substantially reduce the effects of outliers; (ii) investigate effective decomposition-based solution schemes for solving large-scale DFO models that are computationally efficient and have attractive convergent properties; (iii) explore and exploit structures such as submodularity, clustering, and covering of nonconvex DFO models, stimulating solution algorithms with theoretical performance guarantees; and (iv) develop learning-and-optimization frameworks to explore endogenous uncertainty in the DFO models. DFO can significantly reduce the effects of outliers, potentially enabling more accurate and reliable decisions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项教师早期职业发展计划(职业)奖将支持对新方法的调查,以显着增强在分销扭曲下以数据为导向的决策。数据驱动的优化是许多行业中通常使用的工具来支持复杂的决策,但是由此产生的决策通常容易受到数据质量差的影响。例如,随机优化方法可能会受到异常值的过度影响,而强大的优化方法可能会提供过于谨慎的解决方案。 该研究项目研究了一个新的数据驱动优化框架,旨在专门考虑解决方案对数据质量的敏感性,并开发改善这些决策的方法。 除了对乐观优化的新本科和研究生级课程模块外,该项目的教育组成部分还包括一个夏令营模块,适用于对STEM感兴趣的高中女生,与当地科学博物馆的合作以及基于互动优化的Instrigation Instriction Game。该项目将建立用于分配有利优化(DFO)的理论和算法基础,并调查其在分配扭曲下的运营工程领域的应用。 分布有利的优化结合了在输入数据上检查分布假设的方法,并在最有利的分布下选择最佳决策。 具体而言,这项研究将(i)为DFO建立基本框架,从而大大降低异常值的影响; (ii)研究有效的基于分解的解决方案方案,以解决计算上有效且具有有吸引力的收敛性能的大规模DFO模型; (iii)探索和利用结构,例如非凸DFO模型的子二次,聚类和覆盖,并具有理论性能保证的刺激解决方案算法; (iv)开发学习和优化框架以探索DFO模型中的内源性不确定性。 DFO可以显着降低异常值的影响,有可能实现更准确和可靠的决定。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的评估评估的评估来支持的。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
ALSO-X and ALSO-X+: Better Convex Approximations for Chance Constrained Programs
- DOI:10.1287/opre.2021.2225
- 发表时间:2020-12
- 期刊:
- 影响因子:0
- 作者:Nan Jiang;Weijun Xie
- 通讯作者:Nan Jiang;Weijun Xie
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Weijun Xie其他文献
Exact and Approximation Algorithms for Sparse Principal Component Analysis
稀疏主成分分析的精确和近似算法
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:2.1
- 作者:
Yongchun Li;Weijun Xie - 通讯作者:
Weijun Xie
On distributionally robust chance constrained programs with Wasserstein distance
- DOI:
10.1007/s10107-019-01445-5 - 发表时间:
2018-06 - 期刊:
- 影响因子:2.7
- 作者:
Weijun Xie - 通讯作者:
Weijun Xie
Approximate Positively Correlated Distributions and Approximation Algorithms for D-optimal Design
D 最优设计的近似正相关分布和近似算法
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Mohit Singh;Weijun Xie - 通讯作者:
Weijun Xie
Distributionally robust bottleneck combinatorial problems: uncertainty quantification and robust decision making
分布鲁棒瓶颈组合问题:不确定性量化和鲁棒决策
- DOI:
10.1007/s10107-021-01627-0 - 发表时间:
2020 - 期刊:
- 影响因子:2.7
- 作者:
Weijun Xie;Jie Zhang;Shabbir Ahmed - 通讯作者:
Shabbir Ahmed
Dynamic Planning of Facility Locations with Benefits from Multitype Facility Colocation
受益于多类型设施托管的设施位置动态规划
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Weijun Xie;Y. Ouyang - 通讯作者:
Y. Ouyang
Weijun Xie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Weijun Xie', 18)}}的其他基金
D-ISN/Collaborative Research: Early Warning Systems for Emerging Epidemics of Illicit Substances
D-ISN/合作研究:非法物质新出现流行病的早期预警系统
- 批准号:
2240409 - 财政年份:2023
- 资助金额:
$ 50.18万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Interpretable Fair Machine Learning: Frameworks, Robustness, and Scalable Algorithms
协作研究:CIF:小型:可解释的公平机器学习:框架、稳健性和可扩展算法
- 批准号:
2246417 - 财政年份:2022
- 资助金额:
$ 50.18万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Interpretable Fair Machine Learning: Frameworks, Robustness, and Scalable Algorithms
协作研究:CIF:小型:可解释的公平机器学习:框架、稳健性和可扩展算法
- 批准号:
2153607 - 财政年份:2022
- 资助金额:
$ 50.18万 - 项目类别:
Standard Grant
CAREER: Favorable Optimization under Distributional Distortions: Frameworks, Algorithms, and Applications
职业:分布扭曲下的有利优化:框架、算法和应用
- 批准号:
2246414 - 财政年份:2022
- 资助金额:
$ 50.18万 - 项目类别:
Standard Grant
相似国自然基金
陆相页岩油富集主控因素与有利区带评价方法
- 批准号:
- 批准年份:2020
- 资助金额:400 万元
- 项目类别:
茶氨酸主效QTL精细定位及有利基因发掘鉴定
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
营销渠道中有利不公平的供应商奖励对分销商情绪、行为及供应商绩效的影响研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
成藏期后断裂活动控制油气垂向再调整运聚机理及有利部位定量预测
- 批准号:42002140
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
断砂配置侧向分流运聚油气机理及有利部位识别研究
- 批准号:
- 批准年份:2020
- 资助金额:61 万元
- 项目类别:面上项目
相似海外基金
Noninvasive monitoring of cerebrovascular autoregulation during and after endovascular therapy for acute ischemic stroke
急性缺血性卒中血管内治疗期间和之后脑血管自动调节的无创监测
- 批准号:
10668021 - 财政年份:2023
- 资助金额:
$ 50.18万 - 项目类别:
CAREER: Favorable Optimization under Distributional Distortions: Frameworks, Algorithms, and Applications
职业:分布扭曲下的有利优化:框架、算法和应用
- 批准号:
2246414 - 财政年份:2022
- 资助金额:
$ 50.18万 - 项目类别:
Standard Grant
A Study on the Optimization of Urban form and Transportation System with the Penetration of Photovoltaic Power Generation
光伏发电渗透城市形态与交通系统优化研究
- 批准号:
16K01238 - 财政年份:2016
- 资助金额:
$ 50.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Leveraging electronic health records to optimize treatment selection and response in multiple sclerosis
利用电子健康记录优化多发性硬化症的治疗选择和反应
- 批准号:
10583784 - 财政年份:2016
- 资助金额:
$ 50.18万 - 项目类别:
Optimization of access method for various information resources based on users' demands
根据用户需求优化各类信息资源的访问方式
- 批准号:
19500202 - 财政年份:2007
- 资助金额:
$ 50.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)