Collaborative Research NSF-ANR: Mechanisms of Terminal Erythroid Enucleation

NSF-ANR 合作研究:终末红细胞剜除机制

基本信息

  • 批准号:
    2210366
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-04-01 至 2026-03-31
  • 项目状态:
    未结题

项目摘要

This award aims to describe the physical mechanisms at play in enucleation during mammalian erythropoiesis, which is the process of generation of red blood cells (RBCs). The objective is to elucidate the role of the mechanical constraints in the bone marrow on the extrusion and detachment of the nucleus of the erythroid precursor. This role is currently poorly understood, which holds back progress in fundamental studies of erythropoiesis. This project will not only advance our fundamental understanding of erythroid enucleation but provide new knowledge for improving in vitro red blood cell production by engineering mechanical environments to overcome ineffective enucleation. This project will be the first to connect the internal and external forces that drive erythroid enucleation, and to incorporate mechanosensing of the cell. There are several barriers to reveal the mechanisms of intrinsic and extrinsic enucleation cues. First, it is difficult to fabricate an in vitro device that mimics the crowded environment of the bone marrow with extremely small inter-endothelial gaps that allows live imaging of enucleation. Second, the computational modeling for quantifying forces is challenging due to the strong interactions in small gaps and the prediction of forces across molecular to cellular scales. The interdisciplinary team of scientists in this project (consisting of three leading groups: a biologist in erythropoiesis at Northwestern University, a physicist in microfluidics in CNRS Marseille, France, and an engineer in multiscale modeling at the University of Illinois at Chicago) is uniquely positioned to overcome such barriers and elucidate the mechanisms of intrinsic and extrinsic enucleation cues.This project will have practical impact in the biomedical field, such as transfusion medicine in which rare blood types often have limited supplies. The bottleneck of in vivo RBC production is the ineffective enucleation, and the knowledge obtained from this study will help overcome this bottleneck and could potentially revolutionize the industry of blood supply. The project will also have educational and training outcomes, as results and techniques obtained from this project will be incorporated into courses the Principal Investigators teach. One PhD student and two postdoctoral fellows will be trained through the support of this project. This collaborative US/France project is supported by the US National Science Foundation and the French Agence Nationale de la Recherche, where NSF funds the US investigators and ANR funds the partner in France.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项旨在描述哺乳动物红细胞生成过程中去核的物理机制,即红细胞 (RBC) 的生成过程。目的是阐明骨髓中的机械约束对红系前体细胞核的挤出和脱离的作用。目前人们对这一作用知之甚少,这阻碍了红细胞生成基础研究的进展。该项目不仅将增进我们对红细胞剜除术的基本理解,而且还为通过工程机械环境克服无效剜除术来改善体外红细胞生成提供新知识。该项目将是第一个连接驱动红细胞去核的内部和外部力,并结合细胞的机械传感的项目。揭示内在和外在去核线索的机制存在几个障碍。首先,很难制造一种模拟骨髓拥挤环境的体外装置,该装置具有极小的内皮间隙,可以进行摘除的实时成像。其次,由于小间隙中的强烈相互作用以及跨分子到细胞尺度的力的预测,用于量化力的计算模型具有挑战性。 该项目的跨学科科学家团队(由三个领导小组组成:西北大学红细胞生成生物学家、法国 CNRS 马赛微流体物理学家和伊利诺伊大学芝加哥分校多尺度建模工程师)具有独特的地位克服这些障碍并阐明内在和外在剜除线索的机制。该项目将在生物医学领域产生实际影响,例如输血医学,其中罕见血型的供应量往往有限。体内红细胞生产的瓶颈是无效的摘除,从这项研究中获得的知识将有助于克服这一瓶颈,并有可能彻底改变血液供应行业。该项目还将产生教育和培训成果,因为从该项目获得的结果和技术将纳入首席研究员教授的课程中。通过该项目的支持,将培训一名博士生和两名博士后。 这个美国/法国合作项目得到了美国国家科学基金会和法国国家研究机构的支持,其中 NSF 资助美国研究人员,ANR 资助法国合作伙伴。该奖项反映了 NSF 的法定使命,并被认为值得支持通过使用基金会的智力优点和更广泛的影响审查标准进行评估。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Analytical theory for a droplet squeezing through a circular pore in creeping flows under constant pressures
恒压蠕动流中液滴挤压通过圆形孔的解析理论
  • DOI:
    10.1063/5.0156349
  • 发表时间:
    2023-08
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Tang, Zhengxin;Yaya, François;Sun, Ethan;Shah, Lubna;Xu, Jie;Viallat, Annie;Helfer, Emmanuèle;Peng, Zhangli
  • 通讯作者:
    Peng, Zhangli
Polyurethane Culture Substrates Enable Long-Term Neuron Monoculture in a Human in vitro Model of Neurotrauma
聚氨酯培养基质可在人体体外神经创伤模型中实现长期神经元单一培养
  • DOI:
    10.1089/neur.2023.0060
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Mitevska, Angela;Santacruz, Citlally;Martin, Eric J.;Jones, Ian E.;Ghiacy, Arian;Dixon, Simon;Mostafazadeh, Nima;Peng, Zhangli;Kiskinis, Evangelos;Finan, John D.
  • 通讯作者:
    Finan, John D.
Transit Time Theory for a Droplet Passing through a Slit in Pressure-Driven Low Reynolds Number Flows
压力驱动低雷诺数流中液滴通过狭缝的渡越时间理论
  • DOI:
    10.3390/mi14112040
  • 发表时间:
    2023-10-31
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Borbas SW;Shen K;Ji C;Viallat A;Helfer E;Peng Z
  • 通讯作者:
    Peng Z
Microstructure‐based nuclear lamina constitutive model
基于微观结构的核层本构模型
  • DOI:
    10.1002/cm.21835
  • 发表时间:
    2024-02
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Mostafazadeh, Nima;Peng, Zhangli
  • 通讯作者:
    Peng, Zhangli
Physical mechanisms of red blood cell splenic filtration
红细胞脾滤过的物理机制
  • DOI:
    10.1073/pnas.2300095120
  • 发表时间:
    2023-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Moreau, Alexis;Yaya, François;Lu, Huijie;Surendranath, Anagha;Charrier, Anne;Dehapiot, Benoit;Helfer, Emmanuèle;Viallat, Annie;Peng, Zhangli
  • 通讯作者:
    Peng, Zhangli
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhangli Peng其他文献

Deformation of the erythrocyte cytoskeleton in tank treading motions
坦克踩踏运动中红细胞细胞骨架的变形
  • DOI:
    10.1039/c3sm50895a
  • 发表时间:
    2013-07-17
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Zhangli Peng;Q. Zhu
  • 通讯作者:
    Q. Zhu
Primary cilia have a length-dependent persistence length
初级纤毛具有长度依赖性的持续长度
Mapping inertial migration in the cross section of a microfluidic channel with high-speed imaging
通过高速成像绘制微流体通道横截面的惯性迁移
  • DOI:
    10.1038/s41378-020-00217-y
  • 发表时间:
    2020-11-16
  • 期刊:
  • 影响因子:
    7.9
  • 作者:
    Jian Zhou;Zhangli Peng;I. Papautsky
  • 通讯作者:
    I. Papautsky
Two-Component Dissipative Particle Dynamics Model of Red Blood Cells
红细胞二元耗散粒子动力学模型
  • DOI:
    10.1016/j.bpj.2013.11.3179
  • 发表时间:
    2014-01-28
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Zhangli Peng;I. Pivkin;Xuejin Li;G. Karniadakis;M. Dao
  • 通讯作者:
    M. Dao
Kinetic theory for DNA melting with vibrational entropy.
DNA 与振动熵熔化的动力学理论。
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Sebastian Sensale;Zhangli Peng;Hsueh
  • 通讯作者:
    Hsueh

Zhangli Peng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhangli Peng', 18)}}的其他基金

CAREER: Predictive Multiscale Modeling of Cell Migration through Pores between Endothelial Cells
职业:通过内皮细胞之间的孔进行细胞迁移的预测多尺度建模
  • 批准号:
    2339054
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Mathematical, Numerical, and Experimental Investigation of Flow Sensing by the Primary Cilium
合作研究:初级纤毛流量传感的数学、数值和实验研究
  • 批准号:
    1951526
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Multi-Scale Models and Quantitative Experiments of Red Blood Cells Transmigration through Inter-Endothelial Slits in the Spleen
合作研究:红细胞通过脾脏内皮间缝隙迁移的多尺度模型和定量实验
  • 批准号:
    1948347
  • 财政年份:
    2019
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Multi-Scale Models and Quantitative Experiments of Red Blood Cells Transmigration through Inter-Endothelial Slits in the Spleen
合作研究:红细胞通过脾脏内皮间缝隙迁移的多尺度模型和定量实验
  • 批准号:
    1706436
  • 财政年份:
    2017
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant

相似国自然基金

SYNJ1蛋白片段通过促进突触蛋白NSF聚集在帕金森病发生中的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
NSF蛋白亚硝基化修饰所介导的GluA2 containing-AMPA受体膜稳定性在卒中后抑郁中的作用及机制研究
  • 批准号:
    82071300
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
circ100783作为miR-34b分子海绵在铅暴露海马SNARE 复合体形成和突触囊泡释放中的机制研究
  • 批准号:
    81872577
  • 批准年份:
    2018
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目
Mon1b 协同NSF调控早期内吞体膜融合的机制研究
  • 批准号:
    31671397
  • 批准年份:
    2016
  • 资助金额:
    67.0 万元
  • 项目类别:
    面上项目
美国国家科学基金会组织与管理的法律制度研究
  • 批准号:
    L0822107
  • 批准年份:
    2008
  • 资助金额:
    9.5 万元
  • 项目类别:
    专项基金项目

相似海外基金

Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
  • 批准号:
    2412550
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
  • 批准号:
    2326622
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
  • 批准号:
    2326621
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
  • 批准号:
    2134747
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
  • 批准号:
    2326622
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了