CAREER: A multi-scale and hierarchical computational framework to model III-nitride devices operating in the near-terahertz regime

职业:多尺度和分层计算框架,用于模拟在近太赫兹区域运行的 III 族氮化物器件

基本信息

  • 批准号:
    2237663
  • 负责人:
  • 金额:
    $ 55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-05-01 至 2028-04-30
  • 项目状态:
    未结题

项目摘要

Wide and ultrawide bandgap III-nitride semiconductors have the foundational capability to meet the power and frequency requirements of near-terahertz communication systems with bandwidths exceeding 100 gigahertz. III-nitrides are also well positioned to be used in extreme environments, from the cryogenic limit to high temperatures. However, the demonstrated performance of III-nitride devices today is still below theoretical expectations, and the promise of III-nitrides for near-terahertz applications remains unfulfilled. Still experimental advances in isolation of theoretical advances are unlikely to change this existing landscape. To tackle this challenge, in this research, we will create a multi-scale and hierarchical computational framework that will provide a high fidelity insight into the underlying physics of III-nitride devices at different length-, time-, and temperature-scales. These fundamental insights are crucial for identifying material- and device-level advances that will push the bounds of III-nitrides’ based wireless technologies, be it for commercial wireless communication or scientific investigations in extreme environments. This research will have a far reaching impact in areas like healthcare, energy, transportation, space programs, and social and educational advancements. The models developed here will be fully open-source and available to researchers world-wide, amplifying the scale and impact of this research. We will inaugurate an afterschool semiconductors-focused summer camp for middle school students and collaborate with the Inclusivity, Diversity, Equity and Access Institute at the University to recruit low-income and minority students in the department and in our research lab. Web-based learning library on semiconductor physics will be developed to encourage students to think creatively about the possibilities of semiconductors in next-generation electronic systems. The success of this research, outreach and educational plan holds promise to result in decades of productive fundamental knowledge, contribute to translation into important near-terahertz technologies, and motivate the participation and retention of a diverse community of electrical engineers, materials scientists, and physicists.Modeling and simulation tools are the cornerstones of the physics-based and application-driven device and circuit design. Because III-nitride devices are intended for use in high-field and high-frequency applications, current models that neglect Maxwell’s full-wave effects and full-band physics fail at guiding experiments for technology optimization and cannot fully explore the materials-to-circuit design space, which is highly desirable for meeting target performance metrics. Thus, it is safe to say that a fundamental rethinking of computational methodologies for III-nitride devices will be a game-changer for a myriad of near-terahertz applications that can address some of the biggest challenges of current and future times. In this research, we will create a multi-scale computational framework that combines first-principles calculations through numerical transport simulations to a compact circuit model. This framework will identify new theoretical means to interrogate and control the high-frequency and off-equilibrium physics of the near-terahertz III-nitride devices. Salient features of this computational framework include full electronic bandstructure, hot-electron effects, self-heating, quantum-mechanical scattering, charge trapping, low-temperature physics, and full-wave electromagnetics. Because the numerical framework will be complemented with a SPICE-compatible and experimentally validated compact model, the proposed research will enable large-scale circuit simulations and systems design. The outcomes of this research will benefit many stake holders, from material scientists to circuit designers, and enable cross-disciplinary interactions that will set the global stage for multi-generational research in wide and ultrawide bandgap semiconductors.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
宽和超级带隙III氮化物半导体具有满足带宽超过100 gigahertz的近特拉兹通信系统的功率和频率要求的基础能力。从低温极限到高温,III-硝酸盐也可以很好地用于极端环境。但是,当今III二硝酸盐设备的表现表现仍然低于理论期望,而III硝酸盐对近特拉赫兹应用的承诺仍然无法实现。隔离理论进步的实验进步仍然不太可能改变现有的景观。为了应对这一挑战,在这项研究中,我们将创建一个多尺度和分层的计算框架,该框架将为不同的长度,时间和温度范围内的III氮化物设备的基本物理提供高保真度的见解。这些基本的见解对于识别材料和设备级别的进步至关重要,这些进步将推动基于III-Nitrides的无线技术的界限,无论是在极端环境中的商业无线通信还是科学研究。这项研究将对医疗保健,能源,运输,太空计划以及社会和教育进步等领域产生巨大影响。此处开发的模型将是完全开源的,并在全球研究人员中使用,扩大了这项研究的规模和影响。我们将为中学学生提供一个以后教学后为中心的夏令营,并与大学的包容性,多样性,公平和访问学院合作,以在该系和我们的研究实验室中招募低收入和少数族裔学生。将开发基于Web的学习库,以鼓励学生创造性地思考下一代电子系统中半导体的可能性。这项研究,外展和教育计划的成功有望导致数十年的产品基本知识,有助于转化为重要的近特拉兹技术,并激励人们参与和保留电气工程师,材料科学家和物理学家的多样性社区。模型和仿真工具是物理基于物理和应用程序和应用程序和电源的基础。由于III二硝酸盐设备旨在用于高场和高频应用中,因此忽略Maxwell的全波动效果的当前模型和全机构物理学未能指导技术优化的实验,并且无法完全探索材料到电路的设计空间,这对于满足目标性能指标非常值得。可以肯定地说,对III二硝酸盐设备的计算方法的基本思考将是无数近特拉赫兹应用程序的游戏规则改变者,这些应用程序可以解决当前和未来时代的一些最大挑战。在这项研究中,我们将创建一个多规模的计算框架,该框架通过数值传输模拟与紧凑型电路模型结合了第一原理计算。该框架将确定新的理论手段,以询问和控制近特拉赫兹III二氮化器设备的高频和平衡物理。该计算框架的显着特征包括完整的电子带结构,热电子效应,自加热,机电散射,电荷诱捕,低温物理和全波电子设备。由于数值框架将通过与香料兼容且经过实验验证的紧凑型模型完成,因此拟议的研究将实现大规模电路模拟和系统设计。这项研究的结果将使从物质科学家到电路设计师的许多利益持有人受益,并实现跨学科的互动,这将为广泛和超级型带隙半导体的多代研究奠定了全球阶段。这奖反映了NSF的法定任务,并通过使用基础的知识效果和广泛的评估来评估,并以评估为珍贵。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shaloo Rakheja其他文献

Shaloo Rakheja的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shaloo Rakheja', 18)}}的其他基金

IUCRC Phase I: University of Illinois at Urbana-Champaign (UIUC): Center for Advanced Semiconductor Chips with Accelerated Performance (ASAP)
IUCRC 第一阶段:伊利诺伊大学厄巴纳-香槟分校 (UIUC):具有加速性能的先进半导体芯片中心 (ASAP)
  • 批准号:
    2231625
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
2022 Device Research Conference
2022年器件研究会议
  • 批准号:
    2227544
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
79th Device Research Conference. To Be Held Virtually June 20-23, 2021.
第 79 届设备研究会议。
  • 批准号:
    2133323
  • 财政年份:
    2021
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
IUCRC Planning Grant University of Illinois: Center for Aggressive Scaling by Advanced Processes for Electronics and Photonics (ASAP)
IUCRC 规划拨款伊利诺伊大学:电子和光子学先进工艺积极扩展中心 (ASAP)
  • 批准号:
    2052749
  • 财政年份:
    2021
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
SHF: EAGER: Toward Energy-Efficient Heterogeneous Computing Integrating Polymorphic Magnetic and CMOS Devices
SHF:EAGER:迈向集成多态磁性和 CMOS 器件的节能异构计算
  • 批准号:
    1930620
  • 财政年份:
    2019
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
SHF: EAGER: Toward Energy-Efficient Heterogeneous Computing Integrating Polymorphic Magnetic and CMOS Devices
SHF:EAGER:迈向集成多态磁性和 CMOS 器件的节能异构计算
  • 批准号:
    2021230
  • 财政年份:
    2019
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
CRII: SHF: WINGS -- Wireless Interconnects for Next-Generation Systems
CRII:SHF:WINGS——下一代系统的无线互连
  • 批准号:
    1565656
  • 财政年份:
    2016
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant

相似国自然基金

复杂结构化环境下大规模多移动机器人的死锁及协同路径规划问题研究
  • 批准号:
    62373139
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
大规模MIMO低轨卫星物联网多波束传输技术
  • 批准号:
    62301204
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向动态增效的大规模双馈风电机组群多机协调优化控制方法研究
  • 批准号:
    52307052
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
低轨卫星通信系统的稀疏多域扩展大规模接入方案设计
  • 批准号:
    62301123
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向智慧矿山多源异构数据计算的大规模集群调度优化方法
  • 批准号:
    52304185
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: A Multi-faceted Framework to Enable Computationally Efficient Evaluation and Automatic Design for Large-scale Economics-driven Transmission Planning
职业生涯:一个多方面的框架,可实现大规模经济驱动的输电规划的计算高效评估和自动设计
  • 批准号:
    2339956
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
CAREER: Strategic Interactions, Learning, and Dynamics in Large-Scale Multi-Agent Systems: Achieving Tractability via Graph Limits
职业:大规模多智能体系统中的战略交互、学习和动态:通过图限制实现可处理性
  • 批准号:
    2340289
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
CAREER: Structure Exploiting Multi-Agent Reinforcement Learning for Large Scale Networked Systems: Locality and Beyond
职业:为大规模网络系统利用多智能体强化学习的结构:局部性及其他
  • 批准号:
    2339112
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
CAREER: Multi-scale Manufacturing of Porous Carbon Nanostructures
职业:多孔碳纳米结构的多规模制造
  • 批准号:
    2338386
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
CAREER: Evolutionary Games in Dynamic and Networked Environments for Modeling and Controlling Large-Scale Multi-agent Systems
职业:动态和网络环境中的进化博弈,用于建模和控制大规模多智能体系统
  • 批准号:
    2239410
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了