Understanding the Impact of Mechanical Constraints on the Dendrite Formation in Lithium Metal Anodes

了解机械约束对锂金属阳极枝晶形成的影响

基本信息

  • 批准号:
    1911836
  • 负责人:
  • 金额:
    $ 44.14万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Lithium metal is one of the most appealing anode materials for lithium-ion batteries due to its high specific capacity and its low density and negative electrochemical potential. Utilizing lithium metal in lithium/air or lithium/sulfur batteries can achieve a theoretical specific energy several times higher than in existing lithium-ion batteries, which could boost technology innovations of lithium-ion batteries based applications such as portable electronics, electric vehicles, and energy storage systems. However, dendritic lithium growth during charge/discharge cycles poses a major safety challenge to cells made with lithium metal anodes. In this project, dendritic lithium growth is suppressed by inserting an extra stiff layer in lithium-ion batteries acting as a mechanical constraint. The project will fundamentally improve the understanding of the relationship between mechanical deformation and lithium dendrite growth. New generation workforce will be trained in the use of state-of-art computational tools to conduct multidisciplinary research at the interface between computational mechanics and electrochemistry. New course contents on energy storage material properties and modeling aspects will be integrated into undergraduate and graduate courses and hands-on activities will be created to teach high school students various energy-related topics.The research goal of this project is to fundamentally understand the role of mechanical deformation on lithium dendrite formation using a new computational modeling framework. This framework includes a staggered optimization scheme to account for an evolving lithium anode geometry and various multiphysics effects during lithium dendrite formation under mechanical constraints. Resulting phase diagrams will provide experimentalists new insights on the dendrite behavior to tailor material properties and cell design to suppress dendrites. The research will untangle the complex coupling between electrochemical, thermal, and mechanical behaviors at dendrite interfaces. It will answer many fundamental questions such as whether or not dendrites will penetrate the separator by passing through its pores or by piercing it, how mechanics changes the electrochemical properties at the vicinity of dendrites, or how mechanics is changing dendrite morphologies. Ultimately, this work will provide feedback to experimentalists to engineer interface designs and structural designs for better and safer lithium metal anodes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
锂金属由于其高比容量、低密度和负电化学势而成为锂离子电池最有吸引力的负极材料之一。在锂/空气或锂/硫电池中使用锂金属可以实现比现有锂离子电池高几倍的理论比能量,这可以促进基于锂离子电池的应用的技术创新,例如便携式电子产品、电动汽车和电动汽车等。储能系统。然而,充电/放电循环过程中枝晶锂的生长对锂金属阳极制造的电池提出了重大的安全挑战。在该项目中,通过在锂离子电池中插入额外的刚性层作为机械约束来抑制枝晶锂的生长。该项目将从根本上提高对机械变形与锂枝晶生长之间关系的理解。新一代劳动力将接受培训,使用最先进的计算工具,在计算力学和电化学之间的接口上进行多学科研究。关于储能材料特性和建模方面的新课程内容将融入本科生和研究生课程,并将创建实践活动,向高中生教授各种能源相关主题。该项目的研究目标是从根本上理解储能材料的作用使用新的计算建模框架研究锂枝晶形成的机械变形。该框架包括交错优化方案,以解释不断变化的锂阳极几何形状以及机械约束下锂枝晶形成过程中的各种多物理场效应。由此产生的相图将为实验人员提供关于枝晶行为的新见解,以定制材料特性和电池设计以抑制枝晶。该研究将解开枝晶界面电化学、热和机械行为之间的复杂耦合。它将回答许多基本问题,例如枝晶是否会通过穿过分离器的孔或刺穿分离器来穿透分离器,力学如何改变枝晶附近的电化学性质,或者力学如何改变枝晶形态。最终,这项工作将为实验人员提供反馈,以设计界面设计和结构设计,以获得更好、更安全的锂金属阳极。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A multiscale phase field fracture approach based on the non-affine microsphere model for rubber-like materials
基于非仿射微球模型的类橡胶材料多尺度相场断裂方法
SenseNet: A Physics-Informed Deep Learning Model for Shape Sensing
SenseNet:基于物理的形状感知深度学习模型
  • DOI:
    10.1061/jenmdt.emeng-6901
  • 发表时间:
    2023-03-01
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Yitao Qiu;P. K. Arunachala;Christian Linder
  • 通讯作者:
    Christian Linder
A thermodynamically consistent finite strain phase field approach to ductile fracture considering multi-axial stress states
考虑多轴应力状态的延性断裂热力学一致有限应变相场方法
Understanding thermal and mechanical effects on lithium plating in lithium-ion batteries
了解锂离子电池中锂镀层的热和机械效应
  • DOI:
    10.1016/j.jpowsour.2022.231632
  • 发表时间:
    2022-09-01
  • 期刊:
  • 影响因子:
    9.2
  • 作者:
    Yitao Qiu;Xiaoxuan Zhang;Camille Usubelli;Daniel Mayer;C. Linder;Jake Christensen
  • 通讯作者:
    Jake Christensen
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christian Linder其他文献

Mixed isogeometric analysis of strongly coupled diffusion in porous materials
多孔材料中强耦合扩散的混合等几何分析
Understanding the mechanical link between oriented cell division and cerebellar morphogenesis
  • DOI:
    10.1039/c8sm02231c
  • 发表时间:
    2019-02
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Emma Lejeune;Berkin Dortdivanlioglu;Ellen Kuhl;Christian Linder
  • 通讯作者:
    Christian Linder
Tri-layer wrinkling as a mechanism for anchoring center initiation in the developing cerebellum
  • DOI:
    10.1039/c6sm00526h
  • 发表时间:
    2016-05
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Emma Lejeune;Ali Javili;Johannes Weickenmeier;Ellen Kuhl;Christian Linder
  • 通讯作者:
    Christian Linder
Advances in Crest Factor Minimization for Wide-Bandwidth Multi-Sine Signals with Non-Flat Amplitude Spectra
具有非平坦幅度谱的宽带宽多正弦信号波峰因数最小化的进展
  • DOI:
    10.3390/ioca2021-10908
  • 发表时间:
    2021-09-28
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H;Maximilian Eberhardt;Steffen Geinitz;Christian Linder
  • 通讯作者:
    Christian Linder
Understanding geometric instabilities in thin filmsviaa multi-layer model
  • DOI:
    10.1039/c5sm02082d
  • 发表时间:
    2015-10
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Emma Lejeune;Ali Javili;Christian Linder
  • 通讯作者:
    Christian Linder

Christian Linder的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christian Linder', 18)}}的其他基金

CAREER: Stretchability by Design - Understanding Mechanical Phenomena in Microarchitectured Soft Material Systems
职业:设计可拉伸性 - 了解微结构软材料系统中的机械现象
  • 批准号:
    1553638
  • 财政年份:
    2016
  • 资助金额:
    $ 44.14万
  • 项目类别:
    Standard Grant

相似国自然基金

探索间质机械力通过影响SMAD4/JNK/PIN1功能轴对胰腺癌糖代谢重编程的调控机制
  • 批准号:
    82372906
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
骨凝集素通过Piezo1影响软骨细胞机械力感知调控软骨基质降解的机制研究
  • 批准号:
    82302766
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
IFT20通过影响伪足小体组装及其机械力信号转导调控破骨细胞骨吸收的机制研究
  • 批准号:
    32370816
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
集成电路化学机械抛光中微尺度电偶效应对金属平坦化的影响机制
  • 批准号:
    52301086
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高低水分混配饲料物理机械特性对挤压流变和粘结行为的影响机制解析
  • 批准号:
    52305271
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Development of a Respiratory Sensor for Animal Model Research
用于动物模型研究的呼吸传感器的开发
  • 批准号:
    10697651
  • 财政年份:
    2023
  • 资助金额:
    $ 44.14万
  • 项目类别:
Development of a Respiratory Sensor for Animal Model Research
用于动物模型研究的呼吸传感器的开发
  • 批准号:
    10697651
  • 财政年份:
    2023
  • 资助金额:
    $ 44.14万
  • 项目类别:
Assessing the Impact of Age, Sex, and Menopause on Scleral Biomechanics and Gene Expression
评估年龄、性别和更年期对巩膜生物力学和基因表达的影响
  • 批准号:
    10726826
  • 财政年份:
    2023
  • 资助金额:
    $ 44.14万
  • 项目类别:
Cerebrovascular endothelial cilia in the pathogenesis and therapy of Alzheimer's disease
脑血管内皮纤毛在阿尔茨海默病发病机制和治疗中的作用
  • 批准号:
    10575082
  • 财政年份:
    2023
  • 资助金额:
    $ 44.14万
  • 项目类别:
Assessing the Impact of SARS-CoV-2 on Adipose Tissue Function and Glucose Homeostasis
评估 SARS-CoV-2 对脂肪组织功能和血糖稳态的影响
  • 批准号:
    10682138
  • 财政年份:
    2023
  • 资助金额:
    $ 44.14万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了