CAREER: Understanding the Interdependence of Cation and Anion Adsorption for Electrocatalytic Nitrate Reduction

职业:了解电催化硝酸盐还原中阳离子和阴离子吸附的相互依赖性

基本信息

项目摘要

Providing fuels and chemicals without negative environmental impacts requires new catalysts and processes that can be driven by renewable electricity instead of fossil fuels. Electrocatalysis is a method to use renewable electricity to drive low temperature and pressure reactions for distributed sustainable fuel generation, waste treatment, and energy storage. Understanding electrocatalytic reaction rates will increase the energy efficiency and economic viability of new electrocatalytic processes. This CAREER project will study electrocatalysis to convert waste nitrate species to valuable products such as ammonia as a case study for sustainable chemical processes. Nitrate is a harmful pollutant that results from industrial effluents and agricultural runoff, while ammonia is a useful fuel and fertilizer. For electrocatalytic nitrate conversion to be viable, the negatively charged nitrate anion must interact with an electrified electrocatalyst surface in the presence of positively charged cations to reduce nitrate at the desired rates. This project will step-by-step add in the complexity of these factors to develop an understanding of what impacts electrocatalytic reaction rates. In addition to studying this model electrocatalytic reaction, the next generation of scientists and engineers will be trained for the new challenges for a switch to a more sustainable, environmentally friendly chemical economy through coursework and hands on training. The complex interaction of reactants, ions, and the electrocatalyst is incompletely understood for electrocatalysis. This project will study the interplay of the reacting molecule (i.e., nitrate), cations, the electrocatalyst surface, and potential in controlling electrocatalytic rates and selectivities of nitrate reduction. Structure-activity relations will be derived by measuring reaction rates on controlled metal and alloy surfaces and comparing to the measured adsorption energy of nitrate and other intermediates on those surfaces. By studying the interaction of the cations with the nitrate anion through UV-Vis, Raman, and X-ray absorption spectroscopy and comparing to kinetics, how these cation-anion interactions impact the adsorption energies and rates will be identified. The understanding of nitrate electrocatalytic reduction in electrolytes of interest to wastewater treatment will be improved by combining knowledge gained of these interactions. The new insights will be used to evaluate reaction rates for nitrate reduction in continuous electrocatalytic reactor systems. This project will develop methods to apply chemical reactor engineering principles to electrochemical reactors necessary for future advances in sustainable chemical and fuel generation. Specific broader impacts include updating undergraduate core curriculum for modern technologies, an electrochemistry applications and engineering course, Chem-E Car mentorship and outreach, and leveraging NSF I-CORPS to identify practical applications of electrocatalytic nitrate reduction.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
提供燃料和化学物质而没有负面影响,需要新的催化剂和过程,这些催化剂和过程可以由可再生电力而不是化石燃料驱动。电催化是一种使用可再生电力来驱动低温和压力反应的方法,以产生可持续的燃料产生,废物处理和能源存储。了解电催化反应速率将提高新电催化过程的能源效率和经济可行性。该职业项目将研究电催化,以将废物硝酸盐物种转化为有价值的产品,例如氨作为可持续化学过程的案例研究。硝酸盐是一种有害污染物,是由工业废水和农业径流引起的,而氨是一种有用的燃料和肥料。为了使电催化硝酸盐转化率可行,带负电荷的硝酸盐阴离子必须在带正电荷阳离子的情况下与电动电催化剂表面相互作用,以减少硝酸盐以所需的速率减少硝酸盐。该项目将逐步增加这些因素的复杂性,以发展对影响电催化反应速率的理解。除了研究这种模型电催化反应外,下一代科学家和工程师还将接受新的挑战,以通过课程和培训来转向更可持续,环保的化学经济。反应剂,离子和电催化剂的复杂相互作用尚不完全理解用于电催化。该项目将研究反应分子(即硝酸盐),阳离子,电催化剂表面的相互作用,以及控制硝酸盐还原的电催化速率和选择性的潜力。结构活性关系将通过测量受控金属和合金表面上的反应速率,并与硝酸盐和其他中间体在这些表面上测得的吸附能进行比较。通过研究阳离子与硝酸盐阴离子的相互作用通过UV-VIS,拉曼和X射线吸收光谱,并与动力学进行比较,这些阳离子氨基相互作用将如何影响吸附能和速率。通过结合获得这些相互作用的知识,可以改善对硝酸盐电催化减少的理解。新的见解将用于评估连续电催化反应器系统中硝酸盐降低的反应速率。该项目将开发将化学反应器工程原理应用于可持续化学和燃料产生所需进步所需的电化学反应堆的方法。具体的更广泛的影响包括更新现代技术的本科核心课程,电化学应用和工程课程,化学 - E汽车指导和宣传以及利用NSF I-Corps来确定电催化硝酸盐的实用应用,这些奖项通过评估NSF的授权和良好的影响力进行了评估。 标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nirala Singh其他文献

Investigation of the Electrocatalytic Activity of Rhodium Sulfide for Hydrogen Evolution and Hydrogen Oxidation
硫化铑析氢和氧化氢电催化活性研究
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nirala Singh;John W. Hiller;H. Metiu;E. McFarland
  • 通讯作者:
    E. McFarland
A Simple Bond-Additivity Model Explains Large Decreases in Heats of Adsorption in Solvents Versus Gas Phase: A Case Study with Phenol on Pt(111) in Water
简单的键加和模型解释了溶剂中吸附热相对于气相的大幅降低:水中 Pt(111) 上苯酚的案例研究
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    12.9
  • 作者:
    Nirala Singh;C. Campbell
  • 通讯作者:
    C. Campbell

Nirala Singh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nirala Singh', 18)}}的其他基金

CAS-SC: Elucidating the Electrocatalytic Coupling of Nitrate and Carbon Dioxide: Toward Electron Efficient C-N Coupling
CAS-SC:阐明硝酸盐和二氧化碳的电催化耦合:迈向电子高效的 C-N 耦合
  • 批准号:
    2247194
  • 财政年份:
    2023
  • 资助金额:
    $ 66.93万
  • 项目类别:
    Continuing Grant
CAS-SC: Understanding Synergistic Effects of Organic Mixtures for Electrocatalytic Hydrogenation for Fuel Production
CAS-SC:了解有机混合物对燃料生产电催化加氢的协同效应
  • 批准号:
    2320929
  • 财政年份:
    2023
  • 资助金额:
    $ 66.93万
  • 项目类别:
    Standard Grant
Mechanistic Understanding of Electrocatalytic Bio-oil Hydrogenation Rates: Towards a Cost-effective Electrochemical System
电催化生物油氢化速率的机理理解:建立具有成本效益的电化学系统
  • 批准号:
    1919444
  • 财政年份:
    2019
  • 资助金额:
    $ 66.93万
  • 项目类别:
    Standard Grant

相似国自然基金

复杂场景下的视频内容增强与理解研究
  • 批准号:
    62372036
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
SlCNR8调控番茄植株衰老的机理解析
  • 批准号:
    32360766
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
多粒度跨模态信息驱动融合的意图理解及其情感机器人场景应用研究
  • 批准号:
    62373334
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于直觉物理的常识理解、事件预测与环境干预
  • 批准号:
    62376009
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
腈水解酶的催化杂泛性机理解析及其在S-2,2-二甲基环丙烷甲酰胺合成中的应用
  • 批准号:
    22308332
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Understanding interdependence in early adulthoods: Learning from care experienced young people who participated in Lifelong Links
了解成年早期的相互依赖:向参加终身链接的有护理经验的年轻人学习
  • 批准号:
    2877262
  • 财政年份:
    2023
  • 资助金额:
    $ 66.93万
  • 项目类别:
    Studentship
すべての児童生徒にとって効果的な協同学習モデルの開発
开发对所有学生都有效的协作学习模型
  • 批准号:
    21K02523
  • 财政年份:
    2021
  • 资助金额:
    $ 66.93万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Understanding the Interdependence of the Microenvironment and Nuclear Organization in Stem Cell Aging
职业:了解干细胞衰老过程中微环境和核组织的相互依赖性
  • 批准号:
    2045977
  • 财政年份:
    2021
  • 资助金额:
    $ 66.93万
  • 项目类别:
    Continuing Grant
CRISP Type 2/Collaborative Research: Understanding the Benefits and Mitigating the Risks of Interdependence in Critical Infrastructure Systems
CRISP 类型 2/协作研究:了解关键基础设施系统相互依赖的好处并减轻风险
  • 批准号:
    1735354
  • 财政年份:
    2018
  • 资助金额:
    $ 66.93万
  • 项目类别:
    Standard Grant
CRISP Type 2/Collaborative Research: Understanding the Benefits and Mitigating the Risks of Interdependence in Critical Infrastructure Systems
CRISP 类型 2/协作研究:了解关键基础设施系统相互依赖的好处并减轻风险
  • 批准号:
    1735513
  • 财政年份:
    2018
  • 资助金额:
    $ 66.93万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了