Mechanistic Understanding of Electrocatalytic Bio-oil Hydrogenation Rates: Towards a Cost-effective Electrochemical System

电催化生物油氢化速率的机理理解:建立具有成本效益的电化学系统

基本信息

项目摘要

The transportation sector of the U.S. economy generates a large portion of greenhouse gas emissions. Increased use of renewable fuels is one option to reduce transportation-related greenhouse gas emissions and also to secure domestic, sustainable resources for fuel. One promising strategy to help meet transport needs is to synthesize transportation-grade fuels (e.g. liquid hydrocarbons) from biomass waste using renewable electricity, thereby enabling a CO2-neutral fuel source. Bio-oil hydrogenation is known to be the most capital- and energy-intensive steps for biofuel production. One promising approach to address this challenge is to use electrocatalytic hydrogenation (ECH) of biomass because it provides a sustainable method of fuel production and enables the use of renewable electricity. However, improved electrochemical systems and electrocatalysts are needed to make ECH economically competitive. This fundamental research project will address energy efficiency, product yield challenges, and economic analysis of ECH. The project will focus on the molecular pathways and reaction bottlenecks for hydrogenation reactions on metals in the aqueous phase. The research project will provide multidisciplinary training to two PhD students at the University of Michigan and enable them to conduct cutting-edge research in materials synthesis and characterization, computational modeling, and electrocatalysis. Underrepresented minority and female students will be engaged in research and outreach at both the high school and undergraduate level. This fundamental research project will focus on the hypothesis-directed study of electrochemical hydrogenation reactions on platinum group metals and bimetallic alloys in aqueous phase. The research will advance knowledge of metals and bimetallic alloys for use in selective hydrogenation of biomass waste using renewable electricity for sustainable fuel production. The project's goal is to help engender the widespread use of electrocatalytic hydrogenation by focusing on three main areas, the adsorption of organics and hydrogen on metal surfaces, electrocatalytic hydrogenation rates on metals and bimetallics, and using a combination of theory and experiment to understand the link between adsorption and reaction rates and selectivity to predict more active and selective alloys. The team will measure and compute intrinsic reaction rates under controlled conditions on different metals, and then find correlations with adsorption energies and reaction intermediates. The project?s guiding hypothesis is that by starting with metals having moderate activity for hydrogenation and modifying to create bimetallics (e.g., Pt-alloys), one can tune the oxygenated aromatic and hydrogen adsorption energies to increase reaction rates and energy efficiency. To probe the reaction pathway and intermediates, the project will measure adsorption isotherms and use surface-enhanced Raman spectroscopy under reaction conditions to selectively probe species near the electrocatalyst surface. To complement the experimental work, the project includes density functional theory modeling of hydrogen and oxygenated aromatic adsorption energies and ECH activity at applied potentials in water. Fundamental knowledge will result of molecular-level reaction mechanisms for electrocatalytic hydrogenation systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
美国经济的交通运输部门产生了很大一部分温室气体排放。增加可再生燃料的使用是减少与运输相关的温室气体排放并确保国内可持续燃料资源的一种选择。帮助满足运输需求的一项有前途的策略是使用可再生电力从生物质废物中合成运输级燃料(例如液态碳氢化合物),从而实现二氧化碳中性燃料来源。众所周知,生物油加氢是生物燃料生产中资本和能源最密集的步骤。解决这一挑战的一种有前景的方法是使用生物质电催化氢化(ECH),因为它提供了一种可持续的燃料生产方法并能够使用可再生电力。然而,需要改进电化学系统和电催化剂来使 ECH 具有经济竞争力。该基础研究项目将解决 ECH 的能源效率、产品产量挑战和经济分析。该项目将重点研究水相中金属氢化反应的分子途径和反应瓶颈。该研究项目将为密歇根大学的两名博士生提供多学科培训,使他们能够在材料合成和表征、计算建模和电催化方面进行前沿研究。代表性不足的少数族裔和女学生将在高中和本科阶段从事研究和推广活动。该基础研究项目将重点关注水相中铂族金属和双金属合金电化学氢化反应的假设导向研究。该研究将增进对金属和双金属合金的了解,用于利用可再生电力对生物质废物进行选择性加氢,以实现可持续燃料生产。该项目的目标是通过关注三个主要领域,即金属表面上有机物和氢的吸附、金属和双金属上的电催化氢化速率,并利用理论和实验相结合的方式来理解其中的联系,从而帮助实现电催化氢化的广泛应用。吸附和反应速率以及选择性之间的关系,以预测更具活性和选择性的合金。该团队将测量和计算不同金属在受控条件下的固有反应速率,然后找到与吸附能和反应中间体的相关性。该项目的指导性假设是,通过从具有中等氢化活性的金属开始,并进行改性以产生双金属(例如铂合金),人们可以调整氧化芳烃和氢吸附能,以提高反应速率和能源效率。为了探索反应途径和中间体,该项目将测量吸附等温线,并在反应条件下使用表面增强拉曼光谱来选择性地探测电催化剂表面附近的物质。为了补充实验工作,该项目包括氢和含氧芳香族吸附能的密度泛函理论模型以及水中应用电位下的 ECH 活性。基础知识将产生电催化氢化系统的分子级反应机制。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Adsorption Energies of Oxygenated Aromatics and Organics on Rhodium and Platinum in Aqueous Phase
  • DOI:
    10.1021/acscatal.0c00803
  • 发表时间:
    2020-05-01
  • 期刊:
  • 影响因子:
    12.9
  • 作者:
    Akinola, James;Barth, Isaiah;Singh, Nirala
  • 通讯作者:
    Singh, Nirala
Explaining Kinetic Trends of Inner-Sphere Transition-Metal-Ion Redox Reactions on Metal Electrodes
  • DOI:
    10.1021/acscatal.2c05694
  • 发表时间:
    2023-01-27
  • 期刊:
  • 影响因子:
    12.9
  • 作者:
    Agarwal, Harsh;Florian, Jacob;Singh, Nirala
  • 通讯作者:
    Singh, Nirala
Temperature dependence of aqueous-phase phenol adsorption on Pt and Rh
Pt 和 Rh 上水相苯酚吸附的温度依赖性
  • DOI:
    10.1007/s10800-020-01503-3
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Akinola, James;Singh, Nirala
  • 通讯作者:
    Singh, Nirala
Explaining the structure sensitivity of Pt and Rh for aqueous-phase hydrogenation of phenol
  • DOI:
    10.1063/5.0085298
  • 发表时间:
    2022-03-14
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Barth, Isaiah;Akinola, James;Goldsmith, Bryan R.
  • 通讯作者:
    Goldsmith, Bryan R.
Electrocatalytic hydrogenation of phenol on platinum-cobalt alloys
  • DOI:
    10.1016/j.jcat.2024.115331
  • 发表时间:
    2024-01
  • 期刊:
  • 影响因子:
    7.3
  • 作者:
    James Akinola;Isaiah Barth;B. Goldsmith;Nirala Singh
  • 通讯作者:
    James Akinola;Isaiah Barth;B. Goldsmith;Nirala Singh
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nirala Singh其他文献

Investigation of the Electrocatalytic Activity of Rhodium Sulfide for Hydrogen Evolution and Hydrogen Oxidation
硫化铑析氢和氧化氢电催化活性研究
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nirala Singh;John W. Hiller;H. Metiu;E. McFarland
  • 通讯作者:
    E. McFarland
A Simple Bond-Additivity Model Explains Large Decreases in Heats of Adsorption in Solvents Versus Gas Phase: A Case Study with Phenol on Pt(111) in Water
简单的键加和模型解释了溶剂中吸附热相对于气相的大幅降低:水中 Pt(111) 上苯酚的案例研究
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    12.9
  • 作者:
    Nirala Singh;C. Campbell
  • 通讯作者:
    C. Campbell

Nirala Singh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nirala Singh', 18)}}的其他基金

CAS-SC: Elucidating the Electrocatalytic Coupling of Nitrate and Carbon Dioxide: Toward Electron Efficient C-N Coupling
CAS-SC:阐明硝酸盐和二氧化碳的电催化耦合:迈向电子高效的 C-N 耦合
  • 批准号:
    2247194
  • 财政年份:
    2023
  • 资助金额:
    $ 53.06万
  • 项目类别:
    Continuing Grant
CAS-SC: Understanding Synergistic Effects of Organic Mixtures for Electrocatalytic Hydrogenation for Fuel Production
CAS-SC:了解有机混合物对燃料生产电催化加氢的协同效应
  • 批准号:
    2320929
  • 财政年份:
    2023
  • 资助金额:
    $ 53.06万
  • 项目类别:
    Standard Grant
CAREER: Understanding the Interdependence of Cation and Anion Adsorption for Electrocatalytic Nitrate Reduction
职业:了解电催化硝酸盐还原中阳离子和阴离子吸附的相互依赖性
  • 批准号:
    2236770
  • 财政年份:
    2023
  • 资助金额:
    $ 53.06万
  • 项目类别:
    Continuing Grant

相似国自然基金

典型热带生态系统大气零价汞源汇格局变化及机理解析
  • 批准号:
    42377255
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于全图表信息分析的科技文献细粒度理解
  • 批准号:
    72304215
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
SlHSD2调控番茄果实角质层发育的机理解析
  • 批准号:
    32302571
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向多任务理解的复杂语义群体行为分析方法
  • 批准号:
    62306042
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
SlCNR8调控番茄植株衰老的机理解析
  • 批准号:
    32360766
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    $ 53.06万
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    $ 53.06万
  • 项目类别:
    Studentship
Understanding how pollutant aerosol particulates impact airway inflammation
了解污染物气溶胶颗粒如何影响气道炎症
  • 批准号:
    2881629
  • 财政年份:
    2027
  • 资助金额:
    $ 53.06万
  • 项目类别:
    Studentship
Understanding and Improving Electrochemical Carbon Dioxide Capture
了解和改进电化学二氧化碳捕获
  • 批准号:
    MR/Y034244/1
  • 财政年份:
    2025
  • 资助金额:
    $ 53.06万
  • 项目类别:
    Fellowship
Understanding The Political Representation of Men: A Novel Approach to Making Politics More Inclusive
了解男性的政治代表性:使政治更具包容性的新方法
  • 批准号:
    EP/Z000246/1
  • 财政年份:
    2025
  • 资助金额:
    $ 53.06万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了